Some specimens could only be identified to the family level

Since its colonial introduction to the Old World, the golden berry also has been referred to as the cape gooseberry; however, Physalis peruviana from South America is marketed in the United States most commonly as golden berry and sometimes Picchu berry, named after Machu Picchu in order to associate the fruit with its origin in Peru and to address the fact that this fruit is not actually a gooseberry as the name cape gooseberry implies. As a member of the plant family Solanaceae, it is closely related to the tomatillo . High in Vitamins A, B, and C, as well as phosphorus and protein, golden berries also have a range of documented medicinal uses, including antitussive, antihelmintic, antidiabetic, and diuretic properites; they are also used to combat a range of maladies from eczema to conjunctivitis to gonorrhea . Recent studies have discovered 14 new compounds in various species of wild tomatillo that have anti-cancer properties; these compounds, known as withanolides, are already showing promise in combating a number of different cancers and tumors without noticeable side effects or toxicity . Passion fruit/maracuyáis a woody perennial climbing vine that originated in Brazil and then spread throughout South America. Cultivated in humid and dry climates, passion fruits can be grown up to 1,500 masl, but require non-flooded land with good drainage to produce successfully. Both the fruit pulp and seeds of this sweet fruit are consumed as desserts, and the fruits are also squeezed into juices and made into salsas. Similar to cotton, passion fruits can be pressed for oil, which is used to aid digestion. Passion fruits also possess magical and medicinal properties; they are used an as anaphrodisiac , as well as a muscle relaxer and sedative . Cactus fruits of the genus Opuntia are abundant in the Moche Valley today; this plant grows between 500 and 3,000 masl in interandean valleys and survives in soil with low to medium soil fertility. The pulp of the cactus fruit is consumed also has a variety of other uses, including medicinal ; cosmetic ; to attract cochineal insects used for dyes; and as fodder for livestock .

In addition, various wild plum or wild cherry/cerezospecies are distributed throughout Peru, wild and cultivated up to 3,500 masl, with known comestible and medicinal uses .A number of other miscellaneous/wild taxa were identified in the assemblages,vertical grow rack including various weedy taxa found in agricultural fields and on habitation sites, many of which have known economic uses . Others likely represent incidental inclusions, unintentionally transported to the site in the clothing of family members and fur of livestock returning from agricultural fields. In contrast to field cultigens and tree crops that produce large seeds or rind fragments, many of the miscellaneous/wild species discussed below have not received much treatment in the Andean archaeological literature. Only in the past few decades have paleoethnobotanists made attempts to systematically identify small weedy seeds from archaeological samples , in contrast to the recovery of larger taxa hand-picked during excavation or from larger mesh/screen sizes that characterize earlier excavation techniques.Some of these families are represented by multiple genera and hundreds of species, so it is difficult to make specific inferences about their economic uses by Moche Valley residents. Some of these families are well adapted to disturbed environments and occupy agricultural fields , in open uncultivated areas , or on rocky hill slopes or other relatively undisturbed areas . Other species identified to the species or genus level have well-documented economic uses, with data from ethnographic studies and some have longer histories of use evidenced archaeologically. Many of the taxa discussed below had multiple uses, including as food, medicine, fodder, fuel, or other purposes, with different portions of plants used for different purposes, including with different preparation methods . I draw primarily on ethnobotanical uses discussed by Brack Egg , along with other scholars cited below. Food taxa in the miscellaneous/wild category include amaranth/kiwicha 17, lupine/tarwi , mesquite/algorrobo , plantain/Plantago spp., oregano , purslane/verdolaga , rattlepod/crotalaria , saltbush/orache , sow thistle , trianthema , vetch/haba , wildbean and a member of the genus Rubus. Some of these comestibles are fairly well known; for example, amaranth is fairly cosmopolitan in cuisine, as a nutritious grain that can be toasted, popped, ground into flour, or boiled for gruel . Native to Peru, amaranth is distributed throughout the Andes from Colombia to Argentina, on the on the coast, highlands , and high jungle.

Both wild and cultivated , different species of amaranths grow within different elevation zones, with coastal varieties that can be grown up to 500 masl and altiplano varieties up to 4000 masl . Brack Egg lists two wild species that can be grown in the north coast region . Amaranth has long been used as a food source in the Andes, including by the Inka , with archaeological evidence of cultivation going back as far as 2,000 years, recovered in tombs in northwestern Argentina . It is also used as livestock fodder and has medicinal uses, including to treat diarrhea, sore throats, menstrual cramps, and rashes. The green leaves also be can be eaten like vegetables . Mesquite, or algarrobo , is another well-known food; ripened seed-pods are often ground into flour and also used to make chicha. The seed pods also serve as camelid fodder. The sweet, molasses-like flavor of mesquite is incorporated into many beverages in Peru today, including algarrobina, a cocktail that uses mesquite syrup extract. Thriving in alluvial and rocky soils up to 1,500 masl, mesquite trees grow quickly and are long-lived . Their hardwoods are a source of long-burning firewood and charcoal as well as a raw material for wooden tools . The leaves, greens, and seeds of many of the miscellaneous/wild taxa may have been eaten raw or cooked, including lupine, plantain, purslane, saltbush, rattlepod, Rubus spp., sow thistle, vetch, and wildbean, while others were used as seasoning or condiments, such as oregano or trianthema . Some of these taxa have moderate to high degrees of toxicity and must be processed, e.g., lupine, which has a high alkaloid content. A member of the Fabaceae family, lupine, or tarwi, is typically considered to be a ‘highland’ food, as it grows up to 3,850 masl . A number of the miscellaneous/wild taxa have known medicinal uses as well, including acacia/faique , amaranth, knotweed/smartweed , milk thistle/cardo , oregano, purslane, ragweed/ambrosía , rattlepod, saltbush, sedge/piri-piri , spurge , tillandsia/achupalla , sage/salvia , shoreline purslane/capin , sida/pichana , vervain/verbenaand violet/violeta .

These plants have known analgesic properties and been documented for the their use in treating a range of maladies, from coughs/colds, headaches/earaches/throat aches, gastrointestinal distress, rashes, and menstrual cramps, among others, and also have been used in fertility management as contraceptives or abortive agents . Certain taxa, e.g., vervain, have known uses in veterinary medicine as well; used to treat cattle hooves in the Andes today , it is possible that vervain could have been used to treat prehistoric ungulates . Certain spurges that have known purgative properties, along with sedges that have aphrodisiac properties have documented uses in shamanic rituals as well . Some of the miscellaneous/wild taxa also have known fuel uses, including tillandsia, saltbush, mesquite, and acacia. A few archaeological studies have identified plant taxa and other organic materials including woods and other herbaceous plants used as prehistoric fuels on the north coast , for cooking, firing ceramics, and working metal. In Inka times, fuel was an important tribute item . Beyond potential inventories of north coast fuels, the social relations associated with fuel use remain poorly understood. Moche Valley residents likely burned dung as a source of fuel in addition to grasses and tree fuels . In order to identify dung burning archaeologically, Wright suggests that researchers consider the following: if there is a basis for using dung such as a shortage of available wood, the presence of suitable dung-producing animals in the archaeological context considered, recognizable animal dung in the archaeological deposits,vertical grow table and the recovery of such samples from hearth contexts . No wood analysis was conducted in this dissertation, so it is difficult to say at this point if there was a shortage of any particular taxa in the Moche Valley that would have been used for fuel. As discussed further below, seeds of the potential fuel taxa only were recovered in small quantities, but future wood charcoal analyses may reveal a different pattern. The Moche Valley does not have the dense stands of algarrobo trees witnessed in the more northerly Jequetepeque Valley ; I imagine that Moche Valley residents likely used a combination of gathered wild plant taxa and dung as fuel sources.

Camelids would have served as suitable dung-producing animals; indeed, ample amounts of dung, from camelids as well as guinea pigs, or cuy , were recovered throughout the Moche Origins Project excavations at MV-224, MV-225, and MV-83, and was present in many flotation samples . Hastorf and Wright and Miller and Smart argue that animal dung can serve as a vector for seeds from fodder plants, e.g., Poaceae, Chenopodiaceae, Verbenaceae, and Boraginaceae, taxa that were present in the Moche Valley assemblages. A number of the miscellaneous/wild taxa were likely used for animal fodder as well, including amaranth, grasses including crown grass/gramaloteand panic grass/grama , lupine, rattlepod, sandbur/pega pega , sida, tillandsia, trianthema, vetch, and wildbean. All of these taxa have ethnographically documented cases of fodder use for livestock . Brack Egg lists sida in particular as a fodder used for guinea pigs. However, as Wright identifies, separating taxa used for fodder from taxa used for human consumption is complicated. Fodder can often be the same species as food used for human consumption and may also be processed and stored in a similar fashion . Ethnographic data suggest that the boundary between food and fodder is flexible and often depends upon the success of the harvest. In other words, what might be fodder in one year, could be used for human consumption the next year if yields of more preferred foods are low. This distinction even relates to fodder and fuel; for example, the preferred economic use of tillandsia is as fuel, but it can also serve as a fallback fodder for animals . Finally, some of the miscellaneous/wild taxa have other technological uses, as construction materials, for matting/thatching , textile production, etc. Sage and field madder have documented uses as green/yellow or red dyes, respectively . Other taxa may simply be the result of incidental inclusions in the archaeobotanical assemblages, and may not have been used by Moche Valley residents. The archaeobotanical assemblages from the five Moche Valley sites include a combination of wild and cultivated plants, with ecological requirements in many cases involving anthropogenic intervention. Moche Valley farmers had sustained access to water from irrigation canals, resulting in the creation of a landscape of cultivated fields, orchards, and fallow pastures.

Aside from a wide range of field cultigens and tree crops , other fruits would have been actively managed, likely lining fields. A number of miscellaneous wild species thrive in areas disturbed by humans and likely existed and were harvested in gardens even if not intentionally grown. Certain economic weedy species thrive along irrigation canals ; in disturbed areas ; and in fields under cultivation or recently fallowed , presenting Moche Valley farmers with opportunities to collect them while managing farming tasks. Ethnographic and Ethnohistoric Perspectives of Food Preparation and Processing Some materials and techniques of processing and preparation of plant foods recorded in ethnohistoric documents and witnessed today may have some bearing on past practices. Many of the edible plants and animals listed in the inventories of prehistoric sites in Peru are still grown, purchased, or gathered today, and while I do not assume an unbroken continuity for two millennia regarding the ways in which foods were processed and prepared, ethnographic and ethnohistoric sources are a useful starting point for thinking about the organization of food ways. Throughout South America, the practices of baking in ovens or frying over fires were virtually unknown in prehispanic times . While much literature has focused on Inka or highland traditions rather than coastal valleys, a small amount of ethnographic and ethnohistoric information is available for the north coast region.

Agricultural pesticides are often detected in rural homes

A related anaerobic process is nitrate-dependent iron oxidation; a recent review has highlighted, in the context of this process, how the simultaneous presence of nitrate-reducing and iron-reducing areas can potentially be important to nitrogen cycling.Under anaerobic conditions, iron can also be linked to ammonium oxidation.If reactions that generate N2O are active in any of the above processes, they may be stimulated or suppressed by different forms of iron, such as the two indices examined in this study.The degree of this influence under different conditions will then determine the importance of iron relative to other soil properties.Our treatments consisted of two contrasting values for soil moisture and addition of amendments.This was done in order to explore the importance of iron across a wide range of conditions while at the same time avoiding a cumbersome dataset.It is clear from Figure 1 that the importance of iron can change between the two limits of each treatment variable.For example, between 50 and 100% WHC under ammonium fertilization, iron moves from a position of modest relevance to become the highest-ranked driver.Since our results show the importance of iron only at two distinct values, we do not know how its importance under intermediate conditions changes between the two end values.Even without such intermediate data, the differences between contrasting treatments can aid in understanding the mechanisms at work in generating N2O.In the above example, the importance of iron rises markedly under ammonium fertilization as soil moisture increases from 50 to 100% WHC; FeP surpasses FeA in strength as well.

As mentioned earlier, ammonia is oxidized to hydroxylamine, and this can react with iron to produce N2O.In a wetter soil,dutch buckets solutes are more mobile, which can lead to greater production of hydroxylamine as well as greater contact of hydroxylamine with iron.FeP is also likely to be more soluble than FeA.Any combination of these effects might elevate the importance of iron and change which form is more relevant in explaining the associated N2O data.The overall position of iron among other drivers of N2O emission is determined by both its reactivity and the presence of processes subject to its influence.Ample opportunity for inquiry exists for defining the extent of the relationship between iron and N2O in managed as well as unmanaged ecosystems, and this can provide useful practical and theoretical information.For example, including iron in current models of N2O emission may strengthen their predictive ability.In addition, inasmuch as certain indices of iron can be related to its physical or chemical characteristics, observing the relationship between a given index and N2O production, and how this changes under different conditions, may provide insight into the specific reactions at work.As stated earlier, production of N2O is generally accepted to be a microbial affair, and it is logical to assume that the factors that regulate the activity of N2O-producing microorganisms should be the same factors that regulate N2O production.This is not incorrect, but is perhaps a somewhat restrictive rendering; a more accurate framework might include ‘‘biotic-abiotic reaction sequences’’that generate N2O, such as those outlined above.Indeed, ‘‘the complex interactions that occur between microorganisms and other biotic and abiotic factors’’ have been suggested to be a key part of further understanding greenhouse gas production and improving predictions.Pesticide drift, which is the off-target movement of pesticides, is recognized as a major cause of pesticide exposure affecting people as well as wildlife and the environment.In the United States in 2004, > 1,700 investigations were conducted in 40 states because of drift complaints, and 71% of the incident investigations confirmed that drift arose from pesticide applications to agricultural crops.Pesticide drift has been reported to account for 37–68% of pesticide illnesses among U.S.agricultural workers [California Department of Pesticide Regulation 2008; Calvert et al.2008].Community residents, particularly in agricultural areas, are also at risk of exposure to pesticide drift from nearby fields.

Alarcon et al.reported that 31% of acute pesticide illnesses that occurred at U.S.schools were attributed to drift exposure.The occurrence and extent of pesticide drift are affected by many factors, such as the nature of the pesticide 2010], equipment and application techniques , the amount of pesticides applied, weather , and operator care.Pesticide applicators are required to use necessary preventive measures and to comply with label requirements to minimize pesticide drift.Pesticide regulations such as the Federal Insecticide, Fungicide, and Rodenticide Act and EPA’s Worker Protection Standard require safety measures for minimizing the risk of pesticide exposure , and many states have additional regulations for drift mitigation.Better understanding about the magnitude, trend, and characteristics of pesticide poisoning from drift exposure of agricultural pesticides would assist regulatory authorities with regulatory, enforcement, and education efforts.The purpose of this study was to estimate the magnitude and incidence of acute pesticide poisoning associated with pesticide drift from outdoor agricultural applications in the United States during 1998–2006 and to describe the exposure and illness characteristics of pesticide poisoning cases arising from off-target drift.We also examined factors associated with illness severity and large events that involved five or more cases.Participating surveillance programs identify cases from multiple sources, including health care providers, poison control centers, workers’ compensation claims, and state or local government agencies.They collect information on the pesticide exposure incident through investigation, interview, and medical record review.In California, on some occasions, such as large drift events, active surveillance is undertaken for further case finding by interviewing individuals living or working within the vicinity affected by the off target drift.Although the SENSOR-Pesticides program focuses primarily on occupational pesticide poisoning surveillance, all of the SENSOR-Pesticides state programs except California collect data on both occupational and nonoccupational cases.In California, PISP captures both occupational and nonoccupational cases.SENSOR Pesticides and PISP classify cases based on the strength of evidence for pesticide exposure, health effects, and the known toxicology of the pesticide and use slightly different criteria for case classification categories.This study restricted the analyses to cases classified as definite, probable, possible, or suspicious by SENSOR-Pesticides and definite, probable, or possible by PISP.

We also performed analyses restricted to definite and probable cases only.Because the findings from these restricted analyses were similar to those that included all four classification categories , only the findings that used the four classification categories are reported here.In this study, a drift case was defined as acute health effects in a person exposed to pesticide drift from an outdoor agricultural application.Drift exposure included any of the following pesticide exposures outside their intended area of application: a) spray, mist, fumes, or odor during application; b) volatilization, odor from a previously treated field, or migration of contaminated dust; and c) residue left by offsite movement.Our drift definition is broader than U.S.EPA’s “spray or dust drift” definition, which excludes post application drift caused by erosion, migration, volatility, or windblown soil particles.A drift event was defined as an incident where one or more drift cases experienced drift exposure from a particular source.Both occupational and nonoccupational cases were included.An occupational case was defined as an individual exposed while at work.Among occupational cases, agricultural workers were identified using 1990 and 2002 Census Industry Codes : 1990 CICs, 010, 011, 030; 2002 CICs, 0170, 0180, 0290.Figure 1 presents the process of case selection.We selected cases if exposed to pesticides applied for agricultural use including farm, nursery, or animal production, and excluded cases exposed by ingestion, direct spray, spill, or other direct exposure.We then manually reviewed all case reports and excluded persons exposed to pesticides used for indoor applications , persons exposed within a treated area , and persons exposed to pesticides being mixed, loaded, or transported.Drift cases therefore represented the remaining 9% and 27% of all pesticide illness cases identified by the SENSOR-Pesticides and PISP, respectively.We also searched for duplicates from the two programs identifying California cases.Because personal identifiers were unavailable, date of exposure, age, sex, active ingredients, and county were used for comparison.A total of 60 events and 171 cases were identified by both California programs.These were counted only once and were included only in the PISP total.Drift events and cases were analyzed by the following variables: state, year, and month of exposure, age, sex, location of exposure, health effects, illness severity,grow bucket pesticide functional and chemical class, active ingredient, target of application, application equipment, detection of violations, and factors contributing to the drift incident.U.S.EPA toxicity categories ranging from toxicity I to IV were assigned to each product.

Cases exposed to multiple products were assigned to the toxicity category of the most toxic pesticide they were exposed to.Illness severity was categorized into low, moderate, and high using criteria developed by the SENSOR Pesticides program.Low severity refers to mild illnesses that generally resolve without treatment.Moderate severity refers to illnesses that are usually systemic and require medical treatment.High severity refers to life-threatening or serious health effects that may result in permanent impairment or disability.Contributing factors were retrospectively coded with available narrative descriptions.One NIOSH researcher initially coded contributing factors for all cases.Next, for SENSOR-Pesticides cases, state health department staff reviewed the codes and edited them as necessary.Any discrepancies were resolved by a second NIOSH researcher.For PISP cases, relatively detailed narrative descriptions were available for all incidents.These narratives summarize investigation reports provided by county agriculture commissioners, who investigate all suspected pesticide poisoning cases reported in their county.After initial coding, the two NIOSH researchers discussed those narratives that lacked clarity to reach consensus.Data analysis was performed with SAS software.Descriptive statistics were used to characterize drift events and cases.Incidence rates were calculated by geographic region, year, sex, and age group.The numerator represented the total number of respective cases in 1998–2006.Denominators were generated using the Current Population Survey micro-data files for the relevant years.For total and nonoccupational rates, the denominators were calculated by summing the annual average population estimates.A nonoccupational rate for agriculture-intensive areas was calculated by selecting the five counties in California where the largest amounts of pesticides were applied in 2008.For occupational rates, the denominators were calculated by summing the annual employment estimates including both “employed at work” and “employed but absent.” The denominator for agricultural workers was obtained using the same 1990 and 2002 CICs used to define agricultural worker cases.Moreover, in California, where data on pesticide use are available, incidence was calculated per number of agricultural applications and amount of pesticide active ingredient applied.Incidence trend over time was examined by fitting a Poisson regression model of rate on year and deriving the regression coefficient and its 95% confidence interval.Drift events were dichotomized by the size of events into small events involving < 5 cases and large events involving ≥ 5 cases.This cut point was based on one of the criteria used by the CDPR to prioritize event investigations.Illness severity was dichotomized as low and moderate/high.Simple and multi-variable logistic regressions were performed.Odds ratios and 95% CIs were calculated.To our knowledge, this is the first comprehensive report of drift-related pesticide poisoning in the United States.We identified 643 events involving 2,945 illness cases associated with pesticide drift from outdoor agricultural applications during 1998–2006.Pesticide drift included pesticide spray, mist, fume, contaminated dust, volatiles, and odor that moved away from the application site during or after the application.

Although the incidence for cases involved in small drift events tended to decrease over time, the overall incidence maintained a consistent pattern chiefly driven by large drift events.Large drift events were commonly associated with soil fumigations.Occupational exposure.Occupational pesticide poisoning is estimated at 12–21 per million U.S.workers per year.Compared with those estimates, our estimated incidence of 2.89 per million worker-years suggests that 14–24% of occupational pesticide poisoning may be attributed to off-target drift from agricultural applications.Our study included pesticide drift from outdoor applications only and excluded workers exposed within the application area.Our findings show that the risk of illness resulting from drift exposure is largely borne by agricultural workers, and the incidence was 145 times greater than that for all other workers.Current regulations require agricultural employers to protect workers from exposure to agricultural pesticides, and pesticide product labels instruct applicators to avoid allowing contact with humans directly or through drift.Our study found that the incidence of drift-related pesticide poisoning was higher among female and younger agricultural workers and in western states.These groups were previously found to have a higher incidence of pesticide poisoning.It is not known why the incidence is higher among female and younger agricultural workers, but hypotheses include that these groups are at greater risk of exposure, that they are more susceptible to pesticide toxicity, or that they are more likely to report exposure and illness or seek medical attention.However, we did not observe consistent patterns among workers in other occupations.This finding requires further research to identify the explanation.

Well-curated GGB databases play an important role in the data lifecycle by facilitating dissemination and reuse

The AgBioData consortium was formed in 2015 in response to the need for GGB personnel to work together to come up with better, more efficient database solutions. The mission of the consortium, comprised of members responsible for over 25 GGB databases and allied resources, is to work together to identify ways to consolidate and standardize common GGB database operations to create database products with more interoperability. FAIR principles have rapidly become standard guidelines for proper data management, as they outline a road map to maximize data reuse across repositories. However, more specific guidelines on how to implement FAIR principles for agricultural GGB data are needed to assist and streamline implementation across GGB databases. The results were used to focus and foster the workshop discussions. Here we present the current challenges facing GGBs in each of these seven areas and recommendations for best practices, incorporating discussions from the Salt Lake City meeting and results of the survey. The purpose of this paper is 3-fold: first, to document the current challenges and opportunities of GGB databases and online resources regarding the collection, integration and provision of data in a standardized way; second, to outline a set of standards and best practices for GGB databases and their curators; and third, to inform policy and decision makers in the federal government, funding agencies, scientific publishers and academic institutions about the growing importance of scientific data curation and management to the research community. The paper is organized by the seven topics discussed at the Salt Lake City workshop. For each topic, we provide an overview, challenges and opportunities and recommendations. The acronym ‘API’ appears frequently in this paper, referring to the means by which software components communicate with each other: i.e. a set of instructions and data transfer protocols.

We envision this paper will be helpful to scientists in the GGB database community, publishers, funders and policy makers and agricultural scientists who want to broaden their understanding of FAIR data practices.Biocurators strive to present an accessible,ebb flow tray accurate and comprehensive representation of biological knowledge . Biocuration is the process of selecting and integrating biological knowledge, data and metadata within a structured database so that it can be accessible, understandable and reusable by the research community. Data and metadata are taken from peer-reviewed publications and other sources and integrated with other data to deliver a value-added product to the public for further research. Biocuration is a multidisciplinary effort that involves subject area experts, software developers, bio-informaticians and researchers. The curation process usually includes a mixture of manual, semi-automated and fully automated workflows. Manual biocuration is the process of an expert reading one or several related publications, assessing and/or validating the quality of the data and entering data manually into a database using curation tools, or by providing spreadsheets to the database manager. It also encompasses the curation of facts or knowledge, in addition to raw data; for example, the role a gene plays in a particular pathway. These data include information on genes, proteins, DNA or RNA sequences, pathways, mutant and nonmutant phenotypes, mutant interactions, qualitative and quantitative traits, genetic variation, diversity and population data, genetic stocks, genetic maps, chromosomal information, genetic markers and any other information from the publication that the curator deems valuable to the database consumers. Manual curation includes determining and attaching appropriate ontology and metadata annotations to data. This sometimes requires interaction with authors to ensure data is represented correctly and completely, and indeed to ask where the data resides if they are not linked to a publication. In well-funded large GGB databases, manually curated data may be reviewed by one, two or even three additional curators.

Manual biocuration is perhaps the best way to curate data, but no GGB database has enough resources to curate all data manually. Moreover, the number of papers produced by each research community continues to grow rapidly. Thus, semi-automated and fully automated workflows are also used by most databases. For example, a species-specific database may want to retrieve all Gene Ontology annotations for genes and proteins for their species from a multi-species database like UniProt . In this case, a script might be written and used to retrieve that data ‘en masse’. Prediction of gene homologs, orthologs and function can also be automated. Some of these standard automated processes require intervention at defined points from expert scientist to choose appropriate references, cut off values, perform verifications and do quality checks. All biocuration aims to add value to data. Harvesting biological data from published literature, linking it to existing data and adding it to a database enables researchers to access the integrated data and use it to advance scientific knowledge. The manual biocuration of genes, proteins and pathways in one or more species often leads to the development of algorithms and software tools that have wider applications and contribute to automated curation processes. For example, The Arabidopsis Information Resource has been manually adding GO annotations to thousands of Arabidopsis genes from the literature since 1999. This manual GO annotation is now the gold standard reference set for all other plant GO annotations and is used for inferring gene function of related sequences in all other plant species . Another example is the manually curated metabolic pathways in Ecocyc, MetaCyc and PlantCyc, which have been used to predict genome-scale metabolic networks for several species based on gene sequence similarity . The recently developed Plant Reactome database has further streamlined the process of orthology-based projections of plant pathways by creating simultaneous projections for 74 species. These projections are routinely updated along with the curated pathways from the Reactome reference species Oryza sativa . Without manual biocuration of experimental data from Arabidopsis, rice and other model organisms, the plant community would not have the powerful gene function prediction workflows we have today, nor would the development of the wide array of existing genomic resources and automated protocols have been possible. Biocurators continue to provide feedback to improve automated pipelines for prediction workflows and help to streamline data sets for their communities and/or add a value to the primary data.

All biocuration is time consuming and requires assistance from expert biologists. Current efforts in machine learning and automated text mining to pull data or to rank journal articles for curation more effectively work to some extent, but so far these approaches are not able to synthesize a clear narrative and thus cannot yet replace biocurators. The manual curation of literature, genes, proteins, pathways etc. by expert biologists remains the gold standard used for developing and testing text mining tools and other automated workflows. We expect that although text-mining tools will help biocurators achieve higher efficiency, biocurators will remain indispensable to ensure accuracy and relevance of biological data. GGB databases can increase researchers’ efficiency, increase the return on research funding investment by maximizing reuse and provide use metrics for those who desire to quantify research impact. We anticipate that the demand for biocurators will increase as the tsunami of ‘big data’ continues. Despite the fact that the actual cost of data curation is estimated to be less than 0.1% of the cost of the research that generated primary data , data curation remains underfunded .Databases are focused on serving the varied needs of their stakeholders. Because of this, different GGB databases may curate different data types or curate similar data types to varying depths, and are likely to be duplicating efforts to streamline curation. In addition, limited resources for most GGB databases often prevent timely curation of the rapidly growing data in publications.The size and the complexity of biological data resulting from recent technological advances require the data to be stored in computable or standardized form for efficient integration and retrieval. Use of ontologies to annotate data is important for integrating disparate data sets. Ontologies are structured, controlled vocabularies that represent specific knowledge domains . Examples include the GO for attributes of gene products such as subcellular localization, molecular function or biological role,flood and drain tray and Plant Ontology for plant attributes such as developmental stages or anatomical parts. When data are associated with appropriate ontology terms, data interoperability, retrieval and transfer are more effective. In this section, we review the challenges and opportunities in the use of ontologies and provide a set of recommendations for data curation with ontologies.To identify current status and challenges in ontology use, an online survey was offered to AgBioData members. The survey results for ontology use in databases for each data type are provided in Table 1 and a summary of other survey questions such as barriers to using ontologies are provided in the supplementary material 1. In addition, the ways ontologies are used in data descriptions in some GGB databases are described in supplementary material 2. To facilitate the adoption of ontologies by GGB databases, we describe the challenges identified by the survey along with some opportunities to meet these challenges, including a review of currently available ontologies for agriculture, ontology libraries and registries and tools for working with ontologies.

A key component of FAIR data principles is that data can be found, read and interpreted using computers. APIs and other mechanisms for providing machine-readable data allow researchers to discover data, facilitate the movement of data among different databases and analysis platforms and when coupled with good practices in curation, ontologies and metadata are fundamental to building a web of interconnected data covering the full scope of agricultural research. Without programmatic access to data, the goals laid out in the introduction to this paper cannot be reached because it is simply not possible to store all data in one place, nor is it feasible to work across a distributed environment without computerized support. After a brief description of the current state of data access technology across GGB databases and other online resources, we more fully describe the need for programmatic data access under Challenges and Opportunities and end with recommendations for best practices. Sharing among AgBioData databases is already widespread, either through programmatic access or other means. The results of the AgBioData survey of its members indicate that GGB databases and resources vary in how they acquire and serve their data, particularly to other databases. All but 3 out of 32 GGB databases share data with other databases, and all but two have imported data from other database. Some make use of platforms, such as Inter Mine , Ensembl and Tripal , to provide programmatic access to data that is standard within, but not across the different options. Other databases develop their own programmatic access or use methods such as file transfer protocol . Finally, some databases provide no programmatic access to data. A number of infrastructure projects already exist that support AgBioData data access needs, most of which have been adopted to some degree by different GGB platforms . A more recent approach to facilitate data search, access and exchange is to define a common API that is supported by multiple database platforms. An example of this is BrAPI , which defines querying methods and data exchange formats without requiring any specific database implementation. Each database is free to choose an existing implementation or to develop its own. However, BrAPI’s utility is restricted to specific types of data. Alternatively, the Agave API provides a set of services that can be used to access, analyse and manage any type of data from registered systems, but is not customized to work with GGB databases.Aside from primary repositories like GenBank, model organism and specialty databases remain the primary means of serving data to researchers, particularly for curated or otherwise processed data. These databases represent different community interests, funding sources and data types. They have grown in an ad hoc fashion and distribute data in multiple formats, which are often unique to each database and are may be without programmatic access. Below, we lay out some of the challenges and opportunities in programmatic data access faced by GGB researchers using the current landscape of databases. Exploration of these use cases yielded a set of common data access requirements under five different themes, summarized in Table 7.Large comparative genomic portals exist but have limitations in their utility for specialized communities, such as not incorporating data from minor crop species or crop wild relatives or rarely handling multiple genomes for the same species.

Young women were clearly identified as high-risk targets for SH

Gender harassment was reported by 30% of female crew members, of which 9% also reported unwanted sexual attention and 1% reported sexual coercion. The relative prevalence of these SH categories mirrored the pattern in prior California studies, although the rates of workers reporting SH in our study were considerably lower than the rates reported in those studies . This may be explained by regional and crop-specific differences. For example, working conditions in Napa vineyards are generally considered better than those in other agricultural sectors, with workers offered above average wages and benefits . Additionally, we considered harassment only at a worker’s current company, not throughout the worker’s overall agricultural or working career, which could have resulted in a lower reporting rate compared to previous studies. The low rates of unwanted sexual attention and sexual coercion in our study were far lower than those found in other studies. Such low rates reflect well on the Napa industry, but they may also, despite the anonymity of responses, indicate a reluctance among women to admit severe harassment when participating alongside co-workers and in a study coordinated as we did this one. The small number of women reporting unwanted sexual attention or sexual coercion meant we were not able to consider an analysis of the relationship between the severity of SH with the other variables measured. Instead, we focused on two types of group comparison based on the presence or absence of SH: women reporting any type of harassment versus women reporting no harassment, and crews where SH was reported versus crews where SH was absent . We analyzed average scores or counts except for crew gender ratio, SH awareness training and relatives in crew. For these three variables, we classified female participants into additional groups based on the percentage of females in a crew, the percentage of crew members that were SH-trained and the presence or absence of relatives in a crew. Thus, female participants were assigned either to a low-female group or a high-female group and either to a low-SH-trained group or to a high-SH-trained group , using a median split.

Descriptive data for harassed and non-harassed female participants show that harassed women in our study differed on two antecedent variables. As in other industries ,what is a vertical farm harassed women were significantly younger than non-harassed women; women under 40 years of age accounted for two-thirds of reported harassment cases in our study. Second, 89% of women reporting the more severe categories of harassment were seasonal employees. More female seasonal workers than permanent workers reported gender harassment, although this relationship was not statistically significant . Harassed and non-harassed women did not differ significantly in the presence of relatives on their crews, the duration of their employment, crew size, crew gender ratio or the number of members in their crew that had received SH awareness training . Harassed women had significantly higher turnover intentions and lower overall job satisfaction compared to non-harassed women, supporting prior research on the negative impact of SH on morale and worker productivity. We compared descriptive data for SH+ and SH− crews on hostile sexism and male work outcomes. Mean scores for hostile sexism were significantly higher in SH+ crews compared to mean scores in SH− crews, supporting the theory that sexist attitudes contribute to a climate of SH tolerance . This complemented our finding of a higher incidence of gender harassment over other types of SH. The hostile sexism questionnaire can thus be considered an attitudinal measure of the behavioral gender harassment component of the SEQ, as hostile sexist attitudes appeared to be enacted as behavioral harassment towards women workers. Turnover intentions for male members of SH+ were significantly higher and job satisfaction was lower than they were for males in SH− crews. We could not determine whether dissatisfied male workers were more likely to perpetrate SH or if witnessing SH adversely affected male workers; however, the latter has previously been concluded in other research .

We identified several variables associated with the presence of SH in agricultural work crews, and we demonstrated that SH is associated with a decline in work outcomes. The type of design we employed in this study cannot verify causation between variables, only association. However, these statistical associations, together with consideration of the literature on SH in other industries, provides grounds for healthy speculation as to how agricultural companies might address SH among their workers.The oldest woman reporting SH was 47; most harassed women in this sample were 40 years or younger. Despite the lack of statistical differences in SH incidence between seasonal and permanent female workers, the severe forms of SH were overwhelmingly reported by seasonal workers. While recognizing that all workers are at risk of SH, companies should therefore be especially vigilant of the risk to young and seasonal female workers.Changing the structure of work crews is unlikely to reduce SH. In our study, harassed women worked in crews that were large and small, with or without relatives, and with considerable variation in gender ratio. Harassed women were just as likely to be working on crews with a high percentage of females as on crews with a low percentage of females . This was unexpected, as meta-analyses have demonstrated gender ratios to be a significant predictor of SH . However, the gender ratio effect may be small, and as SH occurs in a range of organizational settings , the characteristics of SH perpetrators may be more important. For example, perpetrators in male dominated workplaces tend to be co-workers, whereas perpetrators in female-dominated workplaces are more likely to be supervisors . The questionnaire we used in our study did not ask women about the perpetrators, but the unimportance of crew gender ratio indicates the possibility that SH may have originated not only from inside the crews but from outside, such as from supervisors or other company employees. Our presumption that the crew level is the most relevant company unit for SH was too optimistic. We often observed multiple crews working in the same vineyard, and they often mixed during work breaks; SH could therefore have originated from other crews, especially as the SH reported in our study was primarily verbal and gestural in nature.

Crew membership was also probably more fluid than our study design conceived. Women were asked about SH only during their current employment, but these women did not necessarily work continually in the same crew configuration. If gender ratio is an important antecedent of SH in agriculture, we predict it will be at the level of the company rather than at the level of the work team.Our results, as supported by the literature , indicate that an improvement in organizational climate is a more effective method for tackling SH than a restructuring of work crews. The hostile sexist attitude of both men and women in a crew was significantly associated with the presence of SH. Companies can expect to reduce SH by changing or neutralizing these attitudes. However, shifting these attitudes may be difficult to accomplish, as indicated by our finding that previous SH awareness training was not related to a decrease in reported SH. Similar poor efficacy of SH awareness training has been reported in prior research , suggesting that improvements are needed to the structure and administration of awareness training for agricultural workers. Unless these changes are made, other organizational climate variables, such as the internal management of complaints and the overall social climate of a company , are more likely to be effective in reducing SH. There is still value in conducting training, as it has been shown to make women more likely to report SH and it makes workers more aware of what is acceptable behavior . Since we did not collect details on which training programs the workers received, we cannot comment on the efficacy of one training program over another. Harassed females reported lower job satisfaction and higher intention to quit their jobs, illustrating that SH is likely resulting in companies losing female workers and experiencing other negative effects associated with poor worker satisfaction. The same reduced outcomes were reported by male workers in crews where harassment was occurring, suggesting that SH may be impacting not only the targets but also the co-workers. Dissatisfaction among men as a result of SH thus also has the potential to negatively affect company performance. The current study demonstrated that workplace sexual harassment of female vineyard workers affects the well being and retention of all workers in an agricultural sector where there is a paucity of quantitative data on the issue. Furthermore, this study illustrated that female workers in entry positions to the industry are most at risk of SH, illustrating that SH is a barrier for women seeking to enter the agricultural workforce. Thus, SH has the potential to significantly affect the stability of the labor pool in a time of labor shortage and to incur economic costs not only for workers but also for agricultural organizations seeking to train and retain stable work crews. Incidence of SH in our study was lower than that previously reported for farm workers, but our results should be treated with some caution; there may have been some under reporting due to our method of data collection and our relatively small sample size. This study also measured SH in one region and one crop only, and incidence rates may not generalize to other agricultural regions and sectors. Workplace policies and practices that reduce or eliminate hostile sexist attitudes appear to have the most promise for reducing SH in agriculture. However,vertical strawberries vertical system accomplishing these goals with limited resources and within a company’s traditional organizational structure may be challenging.

Future studies may seek to consider in more detail how organizational climate can be effectively addressed in the agricultural sector, the effectiveness of different SH awareness programs and the characteristics of perpetrators of SH towards women. In response to a shift toward specialization and mechanization during the 20th century, there has been momentum on the part of a vocal contingent of consumers, producers, researchers, and policy makers who call for a transition toward a new model of agriculture. This model employs fewer synthetic inputs, incorporates practices which enhance biodiversity and environmental services at local, regional, and global scales, and takes into account the social implications of production practices, market dynamics, and product mixes. Within this vision, diversified farming systems have emerged as a model that incorporates functional biodiversity at multiple temporal and spatial scales to maintain ecosystem services critical to agricultural production. This essay’s aim is to provide an economists’ perspective on the factors which make diversified farming systems economically attractive, or not-so-attractive, to farmers, and to discuss the potential for and roadblocks to widespread adoption. The essay focuses on how a range of existing and emerging factors drive profitability and adoption of DFS, and suggests that, in order for DFS to thrive, a number of structural changes are needed. These include: 1) public and private investment in the development of low-cost, practical technologies that reduce the costs of production in DFS, 2) support for and coordination of evolving markets for ecosystem services and products from DFS and 3) the elimination of subsidies and crop insurance programs that perpetuate the unsustainable production of staple crops. This work suggests that subsidies and funding be directed, instead, toward points 1) and 2), as well as toward incentives for consumption of nutritious food. Each year, more than 50,000 people in the U.S. die from hospital-acquired bacterial infections, millions experience episodes of food borne illness, and reported cases of “superbugs” such as Methicillin-resistant Staphylococcus aureusand vancomyc in-resistant enterococci are on the rise. For those who acquire a resistant infection in their food, in their community, or in a hospital, resistance is associated with a longer duration of treatment, the use of more potent antibiotics, and longer hospital stays. This, in turn, means increased health care costs and costs to society due to antibiotic-resistant infections. Antibiotic resistance is contributing to the scope and severity of this health care crisis, and at least some of the responsibility for antibiotic resistance sits on the shoulders of industrial livestock production. In livestock operations, low or sub-therapeutic doses of antibiotics are used to promote growth, in addition to their use to prevent and control disease. Today, more antibiotics are used in livestock production and the production of milk and eggs than in humans. While the use of sub-therapeutic doses of antibiotics is regulated less stringently in the United States than in the European Union, there is movement toward and potential for such regulation.

Agricultural mechanization is the use of any mechanical technology and increased power to agriculture

The implication is that increases in agricultural production have to be met through increases in agricultural productivity, and less through expansion of cultivated area. Another worsening factor is the climate change and global warming. Some studies predict that global warming will significantly and negatively affect African agriculture. They also indicate that the use of irrigation reduces the harmful impact of global warming. In addition, irrigation use is a catalyst of improved technology adoption, which will have a substantial impact on food security.The author’s understanding of food security is informed by Sen’s entitlement theory. Farmer’s access to food can be seized either through the output markets or through increases in productivity levels and improvements in food storage. As elicited by the “sell low, buy high” puzzle, the mark-up is usually very high and a significant number of households in rural Mozambique may not afford to purchase food during the lean season. Therefore, it becomes crucial to enhance both agricultural productivity and farmer’s ability to store food. Selective mechanization, improved storage, and other improved agricultural technologies play an essential role in ensuring farmers’ food entitlements. Previous attempts to mechanize the agricultural sector in the post-colonial period have failed, one of the reasons being the 16-year civil war that started a year after the independence in 1975. Moreover, the government established tractor-hire schemes had serious planning,vertical grow shelf management, and training problems, denting the image of agricultural mechanization in general. Agricultural mechanization is also mistakenly perceived as tractor mechanization.

This includes the use of tractors, animal-powered and human-powered implements and tools , as well as irrigation systems, food processing and related technologies and equipment. Although not addressed in this paper, the use of jab planters has been shown to significantly reduce labor requirements. Information on the economic impact of selected improved agricultural technologies is needed to target interventions efficiently and equitably, and to justify investment in such technologies.This paper assesses the impact of improved agricultural technologies by constructing a counterfactual comparison group. In this setting, a comparison of the outcome variable is made between farmers using a given technology and their counterparts with similar observable co-variates .The use of tractor mechanization is significantly correlated with road infrastructure. The distance to the nearest tarred road is three times higher among households who did not use tractors, relative to their counterparts. Remarkably, among the 2 percent of the population that used a tractor, 49 percent accrues to Maputo province, and 32 percent to Gaza province, both located in the south, a region of relatively lower agricultural potential, but of better road infrastructure. The remaining 19 percent are distributed across the other 8 provinces, which includes agro-ecological zones of higher agricultural potential, but relatively poorer road infrastructure. Unsurprisingly, adoption rates rise with increases in both landholding size and livestock flocks for all four improved technologies. Households with larger landholdings will potentially have higher production and thus feel compelled to invest in improved granaries. The use of animal traction or tractor mechanization is also cost-effective in larger fields. Additionally, the adoption of animal traction and tractor mechanization require some initial investment, and asset endowment is positively and significantly correlated with household welfare.

With regard to access to credit, the difference between treated and untreated households was only significant for the adoption of tractor mechanization, and marginally significant for the use of animal traction. This result, however, is an artifact of a low data variation as not many households could access the emerging rural credit market. Furthermore, a tractor can be used as collateral, a bottleneck for many rural households in accessing to the credit market. Membership to farmers’ association is also significantly correlated with the use of improved agricultural technologies. The number of farmers using tractor mechanization is three times higher among members of an association. Similarly, there are twice as many farmers using improved seeds among members of a farmers’ association.Figures 1A through 4A show the distribution of propensity scores for all four technologies. Treated and untreated households overlap very well, suggesting that the overlap assumption is plausible. Additionally, the assessment of the overlap assumption was complemented by the analysis of normalized differences. The results are presented in Table 2, and they show that normalized differences are in general smaller than 0.25 . Exceptions are the variables on head’s age and tropical livestock units. However, this outcome did not affect the estimation results because these two variables were dropped from the stepwise logit model due to their low explanatory power. The results on the stepwise logit model are not reported to save space, but are available from the author upon request.Table 4 presents the estimation results of the impact of selected improved agricultural technologies, contrasting the results obtained through three econometric approaches. With the exception of animal traction, the impact of improved agricultural technologies is consistently positive and significantly different zero. The impact is greater for tractor mechanization, followed by the use of improved seeds, and finally the use of improved granaries. Farmers that used animal traction and experienced losses in 2004/05 agricultural season may be enticed to abandon such technology, especially if they rented the animals and the implements. This is probably one of the reasons why “adoption rates” of improved agricultural technologies are usually very low: some farmers abandon the technology after some unsuccessful adoption attempts. Policies to sustain adoption of improved agricultural technologies should be put in place. Irrigation investments fall in that category.The significance of improved granaries underscores the relevance of post-harvest losses, and reducing these losses potentially results in higher household income in light of opportunities for inter-temporal price arbitrage; and improved food entitlements and farmer’s nutritional status. The author speculates that the benefits from an improved granary might outstrip by far its construction costs, considering that it will be used for more than a year.

The impact of improved seeds on maize is about 2 000 Meticais/ha, and 5 180 Meticais/ha for tractor mechanization . The estimates of the impact can also be regarded as shadow prices. Specifically, during the 2004/05 agricultural season, the use of tractor mechanization would be profitable for the farmer whenever the market cost of hiring a tractor was below $212/ha. Likewise, the market price of improved maize seeds required to sow 1 hectare of maize should be lower than $80. Taking into account that mean household income in 2004/05 was about $137 per adult equivalent , and that less than 5 percent had access to credit, understanding why adoption of improved technologies is extremely low becomes trivial. Even if improved agricultural technologies were riskless, a bulk of farmers would not be financially capable of investing in such technologies, much less irrigation. There is certainly an ample scope to enhance the impact of improved seeds and tractor mechanization, considering that less than 5 percent use irrigation or inorganic fertilizers, and about half of the tractors used in Mozambique are located in Maputo province, and more than 3/4 of all tractors are located in the south. If the Mozambican government wants to achieve the much talked-about green revolution, then huge investments on basic infrastructure and irrigation may pave the way for higher adoption rates and profitability of improved agricultural technologies. The bad news is that climate change and global warming is a translucent reality, potentially with severe implications to African agriculture. In the Mozambican agriculture context, the implication is that any effort to foster adoption of animal traction, improved seeds, tractors, and other improved technologies should be accompanied by investments on irrigation or water conservation technologies. Furthermore, drought-tolerant improved seeds will also significantly increase both agricultural production and productivity amidst low irrigation use and recurrent drought spells across the country.Hundreds of reports and articles begin with a variation on the same apocalyptic exhortation: The combination of population growth, food price volatility,vertical hydroponic and climate change demands a new agricultural revolution to expand and secure the global food supply. The bio-technologies frst deployed in the Green Revolution are still being constantly improved; food prices, however, stay stubbornly high and many fear a yield plateau. The new revolution, they argue, is digital technology. In a recent article about the use of artifcial intelligence in agriculture, for example, Wired gushed about “an explosion in advanced agricultural technology, which Goldman Sachs predicts will raise crop yields 70 percent by 2050” . Goldman, for their part, estimate that digital agricultural technologies will become a $240 billion market by 2050 . X, Google’s “moonshot” venture, recently hailed the arrival of “the era of computational agriculture” . Traditional agribusinesses have found themselves competing with Silicon Valley giants, venture capitalists, scrappy startups, intergovernmental organizations, non-governmental organizations , and research institutions to develop and market a dizzying array of new technologies to feed “the next two billion” and save the world. “Digital agriculture” is a heterogeneous suite of information-rich, computationally-complex, and often capital-intensive methods for improving the efficiency of agricultural land and the profit margins of sectoral actors.

Digital technologies have come to play a role in every stage of the agricultural cycle under capitalism, from input management to marketing produce, pricing commodities futures to pest control. However, while it is true that these technologies increase efficiency, we contest the notion that they will provide a long-term solution to the looming crises of the global food system. For what the narrative of an agricultural techno-revolution elides is how the methods of industrialized food production create these challenges in the frst place. We interpret the rise of digital technologies in agriculture as the continuation of a process dating back to the Green Revolution, namely, to reconfigure agrarian life in a manner amenable to increased profits, especially for actors further up the value chain. For the proponents of digital agriculture, the transition is between two technologically-paved pathways to profit: innovations in high dimensional computing supersede innovations in breeding. A purely technological perspective is insufficient and depoliticizes analyses of far-reaching changes to agricultural production, changes which have an effect on the rest of the capitalist economy . Nevertheless, this has not stopped digital agriculture’s boosters from frequently claiming that it heralds a “fourth agricultural revolution.”1 However, digital agriculture has received limited critical attention from social scientists. The vast majority of critical work on the ascendancy of global technology mega-firms and new information-centric accumulation strategies looks at their effects in non-agrarian industrial and service sectors. However, the generation of profits in these sectors depends in part on keeping inputs for production and reproduction— like food—artifcially cheap . By perpetuating an unsustainable regime of cheap food, digital agriculture technologies support the continued expansion of an equally unsustainable global urban system.We argue that the rise of digital agriculture is emblematic of an intensifying relationship between zones of agrarian production and extraction on the one hand, and zones of agglomeration, industrial production, and service provision on the other. A body of neo-Lefebvrian scholarship describes these apparently distinct zones as co-constitutive, entangled in a dialectic of extended and concentrated urbanization . In this framework, the growth imperative of capitalism requires the transformation of vast landscapes beyond the ‘city’ to increase extraction and agricultural output, the product of which is drawn back inward to fuel growth. In this reading, the socio-metabolic process of urbanization is increasingly generalized, to the point that some have argued for thinking of contemporary urbanization as a ‘planetary’ process. With this in mind, this article interrogates the political economy of digital agriculture and reinterprets the digitalization of the food system through the lens of extended–concentrated urbanization. We begin by introducing digital agriculture and the limited social scientific literature on the topic. Next, we critique the mainstream rhetoric surrounding digital agriculture, which makes a Malthusian argument for the need to feed a burgeoning global population in the face of climate change. Then, beginning from the observation that the crucial role of information is under-analyzed in the extended–concentrated urbanization framework, we build a theoretical argument for how digital agriculture challenges the urban–rural binarism. We locate the framework’s origins as a reaction to earlier threads of globalization theory, which emphasized the supposedly immaterial nature and deterritorializing effects of information and communications technologies .

The data for workers in these sectors come from the March Current Population Survey

Apprehensions by the U.S. border patrols dropped from 876,803 in 2007 to 556,032 in 2009. Because immigrants often send money home, we can use remittances from the United States to Mexico to infer whether the number of immigrants changed substantially during a recession. Figure 2 shows quarterly remittances to Mexico in millions of U.S. dollars as reported by Banco de México . The figure shows that remittances increased during the relatively mild 2001 recession but decreased substantially during the 2008–2009 Great Recession. These data again support the view that the number of Mexican immigrants to the United States fell during the Great Recession but not during the previous, milder recession. Moreover, Warren and Warren estimated that the net change of undocumented immigrants was negative during the Great Recession, which was related to a sharp decrease of new undocumented immigrants. The United States Department of Agriculture, Economic Research Service estimated number of full- and part-time agricultural workers fell from 1.032 million in 2007 to 1.003 million in 2008 and 1.020 million in 2009, before rising to 1.053 million in 2010.5 That is, the number of workers in 2008 was 3% to 5% lower than in the years before and after the Great Recession. Presumably the share of workers dropped by even more in seasonal agriculture, which employs most of the undocumented workers.Our agricultural workers data comes from the National Agricultural Workers Survey.The NAWS is a national, random sample of hired seasonal agricultural employees, who work primarily in seasonal crops.The NAWS is an employer-based survey. That is, it samples worksites rather than residences to overcome the difficulty of reaching migrant farm workers in unconventional living quarters.

These employers are chosen randomly within the U.S. Department of Agriculture’s 12 agricultural regions .Surveyors randomly select 2,500 employees of these growers to obtain a nationally representative sample of crop workers. Surveyors interview the more than 2,500 crop workers outside of work hours at their homes or at other locations selected by the respondent. The NAWS has a long,vertical growers visible history within farming communities, and the survey design incorporates questions aimed at data validation about legal status. Respondents receive a pledge of confidentiality and a nominal financial incentive for participation. As a result, only one to two percent of workers in the overall sample refuse to answer the legal status questions. The NAWS contains extensive information about a worker’s compensation, hours worked, and demographic characteristics such as legal status, education, family size and composition, and workers’ migration decisions. We dropped workers from the sample who were missing any relevant variable, 23% of the original survey sample. The NAWS is conducted in three cycles each year year to match the seasonal fluctuations in the agricultural workforce. Unfortunately, the public-use data, which we use, suppresses information about the cycle and aggregates the 12 regions into 6 regions. As a result, our data set consists of repeated annual cross sections of workers from 1989 through 2012. Column 1 of Table 1 presents national summary statistics for the variables used in our empirical analysis. Columns 2 and 3 provide data for California and for the rest of the country, because 37% of the sample works in California. Compared to workers in the rest of the country, Californian workers tend to have less education; have more farm experience; are more likely to be non-native, Hispanics; and are more likely to work in fruit and nut crops and less likely to work in horticulture.

After analyzing the effects of recessions on agricultural workers, we replicate the analysis for workers in construction, hotels, and restaurants, which also employ many immigrants.In March of each year, workers in the basic CPS sample are administered a supplemental questionnaire in which they are asked to report their income such as hourly wage rate and additional labor force activity such as hours worked in the previous week.8 Because information on immigration is available only since 1994, our sample period is 1994–2013. We include all workers who are 18 years and older.Three recessions occurred during our 1989–2012 sample period . The economy recovered quickly from the first of these recessions in 1990–1991. The second, 2001 recession was also relatively mild. However, the third recession, the 2008–2009 Great Recession, was much more severe and had longer-lasting economic and labor market effects than the first two. We analyze the effects of recessions on hourly earnings, the probability of receiving a bonus, and weekly hours of work of employed workers. For workers paid by time, hourly earnings are a worker’s hourly wage. For piece-rate workers, we use the workers’ reported average hourly earnings. The bonus dummy equals one for workers who receive a money bonus from an employer in addition to the wage, and zero otherwise. Weekly hours of work are the number of hours interviewees reported work at their current farm job in the previous week. The explanatory variables in all these equations are the same. The explanatory variables include all the usual demographic variables: age, years of education, years of farm experience, job tenure , gender, whether the workers is Hispanic, whether the worker was born in the United States, and whether the worker speaks English.The specification uses a legal status variable to capture the bifurcated labor markets for documented and undocumented workers. It also includes crop and regional dummies.

We have seven main explanatory variables: dummies for each of the three recessions, the recession dummies interacted with the legal status dummy , and regional unemployment rates for workers in all sectors of the economy. We use separate dummies for each recession to allow for differential effects across the recession . The interaction terms capture whether employers treat undocumented workers differently than legal workers during a recession. We include the unemployment rate because it peaks after the end of each recession . We do not report the unemployment rate interacted with the undocumented dummy because we cannot reject that its coefficient is zero in any equation. We treat all these variables as exogenous to the compensation and weekly hours of individual agricultural workers. We start by examining the effects of recessions on NAWS workers’ hourly earnings. Column 1 of Table 2 presents regression estimates for the ln hourly earnings equation. The coefficients on the demographic variables have the expected signs and are generally statistically significantly different from zero at the 5% level. Undocumented workers’ hourly earnings are 2.1% less than those of documented workers. Females earn 6.4% less than males. Hispanics earn 4.9% less than non Hispanics. Unlike most previous studies, we find a statistically significant effect of education. English speakers earn 3.9% more than non-English speakers. The coefficients on the recession dummies reflect the effect of the recession on documented workers. Documented workers’ hourly earnings rose 1.8% during the 1990–1991 recession, 4.2% during the 2001 recession, and 6.9% during the Great Recession. We draw two conclusions about the effects of recessions on documented workers. First, the hourly earning effect of the Great Recession was larger than that of the relatively minor recessions, which is consistent with literature on business cycles and the farm labor market in the 1970s . Second, in all recessions, documented workers’ wages rose, which suggests that recessions cause the hired-agricultural-worker supply curve to shift leftward relatively more than did the demand curve. The sum of the coefficients on the recession dummy and its interaction with the undocumented dummy captures the effect of a recession on undocumented workers. The 1990–1991 recession did not have a statistically significant effect on undocumented workers.

Hourly earnings for undocumented workers rose by 3.4% during the 2001 recession and 1.9% during the Great Recession. In contrast to the pattern for documented workers, the undocumented workers’ earnings rose by less during the Great Recession than during the 2001 recession. Thus, not only do undocumented workers earn less than documented workers do in general, but their hourly earnings rise less during recession than do the earnings of documented workers. That is, the wage gap between documented and undocumented workers widens during recessions. In addition to hourly earnings, 28% of the workers in our sample receive bonus payments , which supplement relatively low wage payments . These deferred payments play a similar function to that of efficiency wages in other sectors . We use a binary indicator equal to one if a worker receives a money bonus. Column 2 of Table 2 shows the results of a regression using a linear probability model . For documented workers, the probability of receiving a bonus did not rise during the two relatively minor recessions but increased by 5.8 percentage points during the Great Recession. Thus, the Great Recession not only raised documented workers’ hourly earnings, but it raised the probability that they received a bonus substantially. For undocumented workers, the probability of receiving a bonus fell by 2.9 percentage points during the 1990–1991 recession and rose by 9 percentage points during the Great Recession. Again, this result is consistent with the theory that the Great Recession caused a large supply side shock. Thus,vertical grow for both documented and undocumented workers, the Great Recession had a larger, positive effect on the probability of receiving a bonus than did earlier recessions. The unemployment rate has a statistically significant effect on the probability of receiving a bonus payment. A one percentage point increase in the unemployment rate raised the probability of receiving a bonus by 0.9 percentage points.Because our data set includes information about only employed workers, we cannot directly observe the effect of a recession on total employment. However, we can examine the effect on workers’ weekly hours. When employers have difficulty recruiting workers, they have employees work more hours per week to compensate for an unusually small workforce. For documented workers, weekly hours fell by 2.2 hours during the 1990–1991 recession, but rose by 1.1 hours during the 2001 recession, and 2.3 hours during the Great Recession. For undocumented workers, weekly hours were not statistically significantly affected during the two relatively minor recessions, but rose by 2.6 hours during the Great Recession—more than for documented workers. An increase in the overall unemployment rate by 1 percentage point lowered the weekly hours by 0.3 hours. Thus, an increase in the overall unemployment rate lowered weekly hours, but weekly hours rose during relatively large recessions.We conducted five robustness checks. First, we estimated all three equations separately for documented and undocumented workers. That is, we allowed all the coefficients to vary between these two groups instead of only the recession dummies.

The coefficients on our seven key recession variables were virtually unchanged . Second, we estimated all three regressions eliminating all newcomers , about 3,300 people or 7.5% of the sample, to see if compositional changes in the workforce during recessions are driving our results. However, the coefficients were virtually unchanged . Third, we estimated all three regressions leaving out the unemployment rate. Doing so had negligible effects on the other recession variable coefficients . Fourth, we excluded the crop dummies, in case they are endogenous. The recession variable coefficients were unaffected .Do recessions have different effects in agriculture than in other sectors of the economy that employ many undocumented immigrants, such as construction, hotels, and restaurants? To answer this question, we constructed a comparable data set based on the March Current Population Survey for 1994–2013. We can look at the effects from only two recessions, 2001 and the Great Recession, because the CPS does include certain key variables prior to 1994. It also lacks a variable on bonus payments. In contrast to the NAWS, the CPS data does not record whether an immigrant is undocumented. Therefore, we focus on immigrants in general and form interaction terms between immigrant status and the recession dummies. Otherwise, we use as similar a set of demographic variables as possible. Table 4 presents the regression results for the ln wage and weekly hours in the three sectors. In none of these three sectors did either recession affect the wages of non-immigrants or of immigrants. Presumably, wages are sticky in these sectors, partially due to union and other contracts and minimum wage laws. The unemployment rate had a statistically significant effect only in the construction sector, and that positive effect is small, as in the agricultural sector. The 2001 recession did not affect the weekly hours in these sectors.

A prominent example of NbS in agriculture is the coconut -based farming system

Depending on the data, cache memory is a bridging solution for yield data for example.Acquired in-field moisture or temperature data which need to be displayed to the farmer with low latency a direct switch to the suggested resilient infrastructure must be given.Concrete solutions for machine data, which have been tested in the field, were shown in the iGreen project with the so-called “Machine Connector”.For data, only allowing low latencies, the LWN directly has to be used in case of an interrupted internet connection.Again, here farmers have to diagnose and define which data they need, with which latency, and accordingly design the FDFS.In any case, if farmers have to calculate with interruptions, a parallel, hybrid data acquisition, like in the suggested FDFS, seems best practice.On-farm data storage on the farm server can be erased if cloud computing of a certain task is completed and data safety is guaranteed.The digitization span amongst farmers reaches from no network coverage at all, to farms that use autonomous robots controlled with real time data.For the latter, our approach in the FDFS at Level V makes perfect sense.However, most farmers in a worldwide perspective have no internet at all or only a low bandwidth landline connection to the office area.Solutions that use, and should use, the prior way over an internet connection but without providing desktop solutions, are strongly limited from the start on such remote farms.These farms indicate most reasonable the concern of this paper and might directly take level four or five into account of their digitization process.Last but not least, it is difficult for farmers who already invested in and implemented proprietary solutions of a few OEM brands to switch to or integrate open, standardized, and flexible solutions.APIs and converter plugins are needed for seamless data exchange which is often in conflict with the business model of the manufacturer.Once more a case where it is the responsibility of the OEMs to provide interoperable solutions.Advantages of strengthened interoperability not just for the farmers are expected, but also for the OEMs who might integrate their innovations in the part wise proprietary environment of another OEM.Farms, as mentioned here, seem to be in the same situation as the partners of the iGreen project who decided on the following strategy to ensure interoperability: “iGreen touches on so many actors, that a traditional top-down, up-front standardization of document formats and APIs would be so costly and time-consuming that it would be impossible to realize within the frames of the project.Instead,rolling benches the iGreen project used semantic technologies as an attractive alternative to costly and time-consuming standardization efforts by committee”.

Nature-based Solutions seek to maximize nature’s ability to provide ecosystem services that help humans address issues such as climate change adaptation, disaster risk reduction, and food security.The IUCN defines NbS as “actions to protect, sustainably manage, and restore natural and modified ecosystems that address societal challenges effectively and adaptively, simultaneously providing human well-being and biodiversity benefits”.A key challenge in ecosystem management is the loss of agrobiodiversity as a result of agricultural intensification.NbS in agriculture can reduce the adverse environmental impacts of intensive modern agriculture and sustain agricultural production.Many traditional agricultural production systems, such as agroforestry, have the potential to address natural resource management challenges, provide societal benefits, and conserve biodiversity.They create complex and diversified farmsteads with the goal of producing sustainable and long-term outputs, as in ecological or sustainable agriculture.Low external input usage, integration of different life forms and sustainable intensification are the hallmarks of these cultural systems.Such traditional land use systems also represent the accumulated wisdom and insights of farmers who have engaged with the environment without recourse to outside in-puts, capital, or scientific skills over millennia of cultural and biological transformations and are often regarded as time-tested examples of sustainable land use practices; the tropical home gardens are a case in point.These are traditional multi-strata agroforestry systems , which provide a range of ecosystem services such as provisioning, regulating, supporting, and cultural services.Although coconut is cultivated in several parts of the tropics, it is the most important crop in Kerala – “the Land of Coconut Trees”.Indeed, the euphonious Malayalam word, Keralam , is derived from two root words: Kera, which means coconut tree, and Alam, which means land.Kerala is the south-western state of the Indian Union.The coconut palm is, in fact, the “nucleus” of the Kerala home gardens , around which the other constituents are orchestrated .Although agroecology emerged as a distinct branch of science in the early twentieth century, the ecological underpinnings of agriculture in Kerala are much older.

In fact, Krishi Gita, a 15th-century Malayalam poem, explains the environment-friendly cultivation systems of medieval Kerala, including that of coconut palms.This paper examines the autecological characteristics of coconut, besides the role of CBFS in providing nature-based solutions to various ecological challenges, with special reference to Kerala.It focuses on three specific questions: what natural resource challenges CBFS addresses, what ecosystem services CBFS provides, and what biodiversity outcomes CBFS offers.It also examines the functional dynamics and vegetation structure of complex coconut-based land use systems.Aspects like varietal development, cultural practices, and pest and disease management, which are discussed in detail elsewhere, are, however, not focused here.Coconut is one of the earliest among the domesticated plants.Based on the occurrence of two genetically distinct sub-populations corresponding to the Pacific and the Indo-Atlantic oceanic basins, Gunn et al.postulated two geographical origins of the coconut palm: Southeast Asia and the southern margins of the Indian subcontinent.India has a long history of coconut cultivation spanning over three millennia.The crop is inseparably intertwined with the socio-cultural heritage and economic well being of the people of Kerala, as in other coconut-growing regions of the world.It is ingrained in folklores and has been celebrated by poets over centuries.For instance, Krishi Gita, the 15 century text, describes the importance of coconut growing in the livelihood of the residents of medieval Kerala.Apart from being an oilseed crop of enormous significance , it also yields food, drinks, timber, and fibre, besides being an ornamental species of prominence.This astounding range of products and services from the palm justifies the sobriquet “Tree of Life” or “Kalpavriksha”.Being a portable source of diet, water, and fuel, it is thought to have played a pivotal role in pre-historic migrations and the growth of civilization in the wet tropics.According to the FAO statistics , the Philippines, Indonesia, and India are the three largest coconut-producing countries in the world, with 3.5, 3.0, and 2.2 million hectares, respectively.

With over 80% of the area and 62% of the global output, South and Southeast Asia and the Pacific Islands dominate the scene.Coconut is also popular in many other tropical and subtropical nations, including those along the African coasts and in LAC , where they grow naturally as well as in planted and managed stands.A large proportion of such planted and managed stands of the palm are in smallholder farms of size less than 5 ha; the farms in Asia, the main coconut-growing region of the world, are, however, much smaller.And in Kerala, more than 98% of the operational holdings are either small or marginal.Most coconut-growing areas were once forested and, in some regions like the Pacifific Islands, where coconuts are produced, the crop is still the primary cause of deforestation.For example, in Vanuatu , the development of large “coconut estates” became a dominant land-use activity during the 20th century by the Europeans, and forests and old tree-fallows were transformed into coconut plantations.A large number of smallholder coconut plantations that substantially altered the indigenous farming systems followed this.Thaman et al.reported a gradual shift away from the traditional mixed agroforestry systems in the Pacific islands in which fruit trees and other culturally useful trees,ebb and flow bench such as coconut, breadfruit , traditional banana and plantain clones , citrus , Malay apple and Polynesian vi-apple were dominant, to monocultural production of commodities.Likewise, detrimental environmental effects of coconut monoculture have been noted in Western Samoa, central Indonesia, and Vanuatu.Although tropical deforestation caused by palm oil production is well-known , deforestation by coconut oil production and its biodiversity implications are rarely discussed.Furthermore, the majority of coconut is produced in tropical island nations, where “endemism richness” – an index that combines endemism and species richness – exceeds mainland regions by a factor of 9.5 and 8.1 for plants and vertebrates, respectively, and deforestation may result in the extinction of the endemic species.Furthermore, conservationists classify coconut as an invasive species that threatens biodiversity in the Chagos Archipelago.However, such evidence is scarce elsewhere, and coconut plantations are an important part of the cultural landscape in many countries providing employment, food, and artisanal products, as well as playing an important role in ecological restoration.In Kerala, coconut palm is the most extensively cultivated crop.It grows virtually everywhere in the state.Kerala has a diverse range of land forms that includes mountains, riverine deltas, wetlands, and ecoclimatic conditions that range from high rainfall zones to rain-shadow regions.The soil, climate, flora and fauna of these ecoregions are also correspondingly diverse.The principal crops of the state, including coconut, are cultivated in most of these ecoregions since time immemorial.Coconut is a major crop in the lowlands of Kerala, but the midlands and the slopes of the highlands are also suited for its cultivation.The western seaboard, the shorelines of lagoons and backwaters, and the banks of creeks in Kerala are profusely flecked with this palm.

The palm abounds on the fringes of the meandering valleys that surround the numerous hills – a distinctive feature of the state’s topography.Despite being a prominent crop in the lowlands and midlands, coconut cultivation has gradually expanded to the high-altitude regions , which may not be ideally suited for the crop in terms of its eco-climatic requirements.Consistent with the importance of the palm in the bio-cultural legacy and livelihood of the people of Kerala, there was a dramatic increase in the area of coconut in the state during the second half of the 20th century.In fact, area under coconut increased by 106% between 1955 and 2000.Conversion of paddy fields and other croplands has contributed much to this so-called “coconut boom”, which, however, faded subsequently.Indeed, the state’s coconut area decreased dramatically between 2010–11 and 2015–16, but it increased significantly after that, by about 1,00,000 ha in 2018–19.It should be noted, however, that it is difficult to estimate the area under coconuts precisely due to a lack of standardized procedures for estimating areas when the species grows at different densities and is planted and nurtured as a crop either alone or in combination with other species.In multi-strata systems, extinction of incoming solar radiation by the tree canopies warrants the use of shade-tolerant or sciophytic species as inter-crops.Factors such as stage of development of coconut palms, growth habit/crown characteristics of the associated tree components and their planting geometry, determine stand leaf area index, and in turn, the magnitude of light extinction.Optical density of multi-species systems especially involving woody perennials are clearly lower than that of monocropping systems owing to the higher stand leaf area index in the former.In line with this, Kumar and Kumar, in an experimental study involving 17-year and 8-month-old coconut palms and three 3 year and 9-month-old dicot multipurpose trees, found that the stand leaf area index varied from 5.24 to 7.15 for coconut+ dicot multipurpose tree systems as opposed to 4.9 for coconut monoculture.Reduced light availability beneath the multi-strata canopy may reduce sub-canopy yields of some crops , although yield levels may also increase or remain the same in some situations, reflectsing differential understory performance of crops.Shade-loving/tolerant crops maintain positive net photosynthesis even when the understory irradiance is relatively low.Phenotypic plasticity in certain plant traits, particularly those morphological features for optimizing light capture, is also high in shadetolerant species, which helps to explain their improved understory performance.In an exploratory attempt, the understory species that are widespread in the CBFS were classified as “shade sensitive,” “shade intolerant,” “shade-tolerant,” and “shade-loving”.However, there may be varietal and cultivar differences in adaptability to shade even within the same species, which obscures such classification schemes.Wright et al.postulated that there are a few extremely shade-tolerant and a few extremely light-demanding species, with the bulk of species, however, having intermediate and hence overlapping light preferences.Herbs like colocasia or taro , elephant foot yam , ginger , tannia , turmeric , yams , and many medicinal and aromatic plants are widely recognized as examples of shade-loving/tolerant crops.

The respondent further underscores the need for precise models dealing with biology and living animals

Some respondents from the larger companies and cooperatives suggest that the attitudes might be affected by the perceived inconvenience that data gathering causes.They all believe that more farmers would have a positive view on it if it was made easier for them to collect it.However, there is also a sense that the data is not used optimally, partly because it is saved in different databases that are not interconnected.The responses from the respondents indicate that data is being gathered differently depending on the agricultural sector.For instance, many respondents in the dairy section state that there is a lot of data gathered, to a high degree on an individual level, on the farm animals.In contrast, arable farmers also collect data on almost all farms, but that data is not always as detailed.An arable farmer may collect remote sensing satellite data on its farm, but sometimes not with a resolution of square meters, but rather on a field or even farm level.The inputs, i.e.the resources added to the soil, are what would be interesting for the farmer to get decision support on, if one could see a beneficial correlation between input and output.One responding farmer with previous experience from the tech industry, believes that the problem with applying AI to arable farming is the lacking volume of interconnected data.The whole data chain is not connected today, he states.In practice, the input data taken during, for example, arable seeding is not properly connected to the output of the harvest.Additionally, the insights from the harvest are not used as a decision basis for the next seeding.Thus, the data loop is not closed, which it would need to be for AI to be efficient.This data gap combined with the large amount of uncertainty factors, such as unpredictable weather, is a technical hindrance to the learning of AI models.In the field of AI and machine learning, there is an important tradeoff between bias and variance.In the interviews, the respondents had different opinions on the matter.The concept was discussed with the respondents as ‘generalizability’ and ‘precision’ instead of their technical terms.Some respondents say that precision is extremely important since a technical solution that only predicts or detects something half of the time is useless.At the same time,hydroponic grow system other respondents say that as long as the predictions are slightly better than human predictions or detections then the model can be as general as one wants.

In fact, many respondents claim that there is a much larger market for standardized models than the ones that are too adapted after local needs.There is a tendency among arable farmers and corporations that they tolerate a higher degree of generalizability while livestock farmers need more precision.A respondent in the livestock farming sector claims that a farm would never really benefit from a technical solution that could only detect rut among the animals one out of three times.Of course, many respondents bring up that there is a need for balance between generalizability and precision, and that it would be optimal if there was some degree of customizability in that aspect so that each solution can fit each farm.One key concern for the development of smart farming technologies is ownership of the data.Most smart farming systems are created as closed technological ecosystems, with limited possibilities of sharing data in between each other.This technological segregation hinders the systems to share data with each other and is thereby an obstacle to the interconnection between systems.Descending from the rivalry between the major transnational agricultural technology companies, including the quest to both pin the users to their specific technological ecosystems and avoid giving their rivals a chance to create competitive technology, this structure is difficult to change.With that said, two respondents note a tendency for transnational agricultural technology companies to move away from technology that ensnares the user to their ecosystem, to more open data flow.Such open data flow is believed to create more value for the businesses and their users.Consequently, a higher degree of data is expected to be on open standards.Even if the companies providing the technology make some progress towards open data sharing, a couple of projects are created to facilitate the data sharing compatibility.GigaCow, a research project by the agricultural university SLU on data for dairy farms, aims to enable data sharing by automatically exporting the data from different milk robots over time.Such initiatives are welcome to most farmers.However, this is a third-party work-around solution and not as straight-forward as if all machines would automatically be open for data sharing.

Some respondents lift the potential threat towards online IT systems as a risk when implementing new smart farming technology.The risk of being hacked poses a threat both to farmers and to society at large.Focusing on society at large, a respondent from a governmental agency describes cyber security as a particularly important aspect of digitalization in agriculture.This respondent believes that such a data platform probably would be classified with an extremely high security and secrecy label and be managed by the Swedish Security Service SÄPO.Therefore, this could be regarded as a clear barrier for the development process of a common data platform.Nevertheless, the respondent adds that in case of potential cyber-threats it would be better to have the data stored on a common platform than with individual farmers, since people would be managing and looking after the platform to a much higher degree than farmers currently are securing their data.Even though these issues are mostly raised by the larger organizations and authorities, the threat is also acknowledged by some farmers.They believe that connected data platforms with weak security make the farm quite vulnerable to threats.However, one farmer commented that “it is not worse than having all money in a bank account, and that I trust today.”.Other respondents, both governmental agencies and farmers, recognize the IT systems as possibly vulnerable but are not necessarily worried.Instead, they reject the belief that lacking cyber security would pose a greater threat to agriculture than to any other sector in society.When it comes to digitalization of such a fundamental societal system such as the agricultural sector, many strategic decisions are of nationwide interest.Some of the interviewed respondents from larger organizations and authorities believe that there is a wide interest that the agricultural sector becomes smarter.However, farmers are themselves accountable for making this technological transition.Two respondents argue that there is a lack of initiatives from the state or from the large organizations to drive the propagation of digitalization forward in a structured manner.One respondent, working at a governmental authority, addresses the topic of nationwide interest in digitalizing the agricultural sector , stating that AI in agriculture is a natural step moving forward.The respondent says that there are a lot of internal discussions in governmental agencies regarding if and how they should take a more active leadership role in the digitalization of Swedish agriculture.The governmental official thinks that Sweden is behind with its digital development compared to other countries with weaker economic conditions and budgets for agriculture.

A natural first step, according to this respondent, is to create a common national data platform for all agricultural data to be compiled on.Still, this respondent sees no clear political ambition driving this change, while this could speed up the digital transition tremendously.Although there is no wish to ‘force’ farmers into using agricultural technology and digitalizing their businesses, it is a likely progress if there is a nationwide and political interest in going in that direction.As in any other industry, the agricultural sector is driven by the quest for increased profit.Money is a motivator, not only for larger agricultural enterprises but also for farmers.Therefore, the general low profitability in agriculture is a major problem for farmers.Optimization plays an important role for the often unprofitable Swedish agricultural farms to be competitive on the world market.Even though there are lots of subsidies connected to food in the European agricultural system, no farmer respondents recognize any subsidies for investments in new technologies at a farm-level.Instead, the technological transition that is supposed to lead to more sustainable food production or larger output is financed by the individual farmer.different farmers have distinct economic incentives to implement smart farming technologies in their work.Generally, there is one group of farmers that have less reason to care about implementing new technologies since they will have structures in place to reach their revenue in any case.This group often owns their own property and farmland.On the other hand, there are farmers that lease their farmland and therefore constantly must become more and more effective.It is not only a matter of farm ownership though, also the size of the farm affects the probability that smart farming technologies will increase profitability.With a small farm, farmer respondents believe it is difficult to profit from smart farming techniques.A farmer with a small farm describes that he cannot afford buying new equipment, such as a new tractor, himself.Upgrading the machine park is necessary for smart farming technologies to gather enough useful data.This can be linked to the major macro trend of consolidation of farms.Basically, this means that smaller farms cannot afford to compete with the larger ones that can use their competitive advantages of being larger.There is simply not enough profit in managing most small farms, a problem which forces many farmers to merge with neighboring farms.Another trend that impacts the agricultural sector is how technologies are sold and distributed.Today, indoor garden most technology is bought as a hardware which is often a huge expense for the farmer.However, slowly things are changing.There is a transition happening towards services being bought as ‘Software as a Service’ solutions.This allows for business models in which the sold hardware is much cheaper than today or even provided at no cost, while the farmer pays a fee to subscribe for using the set of hardware and software.One respondent from an agricultural cooperative foresees that this change will have major implications and wonders whether, in ten years from now, tractors will be sold solely as a rental service instead of as a product.To enable this, an enormous amount of data will be needed.

One communicated and discussed concern about implementation of smart farming technologies is the dependency it might create towards technology.Dependency on technology refers to a system that relies on automated or semi-automated activities based on often incomprehensible software, a constant power supply or Internet-access.The system itself is not problematic to any of the respondents.However, there are some concerns regarding the cases when this type of system fails.One respondent, from an organization, states that the usefulness of the system would be compromised if the communication infrastructure would somehow break.The concern is expressed in different ways and with different urgency.Livestock farmers express their concern about this since their activities revolve around living beings, whose comfort and health rely on the technological systems continuing to operate.Also, when it comes to dependency on technology, another aspect that several respondents mention is that some practical knowledge among farmers and advisors might be forgotten.One responding farmer believes that if he applies too much technology to his farm he would risk losing some of the local, tacit knowledge of the farm.Particularly, some local variations of the farmland he finds difficult to represent correctly with data.Since there are a vast number of connected parameters affecting how a crop at a specific place will grow, he fears that a program could miss some critical aspects.This may be linked to a certain expressed mistrust towards technology, that it needs to be double checked to make sure it is doing the right thing while working autonomously.In general, there is a positive attitude towards smart farming and what it could mean, to the agricultural sector as a whole and to farmers specifically.Incorporating smart farming technologies could mean that time and costs for activities, such as irrigating and fertilizing, are reduced.Therefore, farmers can better manage their time when using well-functioning new technology.One positive side effect of this is an improved work environment for the employees.With that in mind, researcher respondent R2 states that farmers are generally bad at valuing their time spent compared to the economic return.

The primary problems cited in dominant discourse on sustainable agriculture relate to these crises

Combined these two effects lead to an unambiguous increase in both crop and ecological damage in the agricultural importer. For the case of a simple production subsidy this suggests that, for agriculture exporting countries, invasion related crop damage serves as an adequate proxy for the sign of ecological and total invasion related damage. However, since more complex policies—for example a combination of subsidies to producers and consumers of agriculture—may instead generate changes in crop and ecological damage of opposite signs, we reiterate our general concern over the use of crop damages as a proxy for total invasion related damages. In this section we discuss the likely consequences of relaxing some of the important assumptions of our model. The distribution of inter arrival times for successive introductions is stationary in this model. More appropriately, perhaps, we can think of the arrival rate as dependent on the number of successful introductions in the past. This would be appropriate, for example, if there was a finite pool of exotic species which was being “whittled away” as introductions became successful. In real life, the pool of exotic species is orders of magnitude larger than, say, the expected number of successful introductions in a given year—suggesting that our approximation of the process as homogeneous with respect to time is appropriate. We have also made several simplifying assumptions concerning the nature of the commodities trade: Home is a small, undistorted economy that does not engage in intra-industry trade. If Home is instead a large country in the market for agricultural goods, then changes in the Home subsidy rate that spur local production also affect world prices. Under general conditions9 it can be shown that an increase in S lowers the world price of agricultural goods if Home initially imports agricultural goods. This price change induces a change in local consumption such that overestimates the magnitude of the change in Home imports: as the world price of agricultural goods falls, Home consumers want to buy more, so Home imports fall by less than the increase in Home production of agricultural goods. Indeed, if the elasticity of import demand in Home’s trade partner is less than unity, Home imports of agricultural goods actually rise with an increase in S.

Interpreting Propositions 2 and 3 in this context reveals that the usefulness of agricultural subsidies as an indirect means of reducing successful introductions of non-native species is limited,ebb flow or even reversed, when prices on world markets are responsive to local policy changes. Finally, suppose that countries engage in intra-industry trade in goods. In such a case, changes in net imports misrepresent the true impacts of trade policy changes since rates of exotic species introductions depend not on net imports but gross imports. For example, while the United States is a net exporter of agricultural goods , its imports of agricultural goods are substantial: $37,755 million in 2000 . Cross-hauling of goods can arise for a variety of reasons, and the implications for the validity of propositions 2 and 3 depends on the underlying source of the cross-hauling. First, agricultural commodities include a large variety of goods, from coffee to corn to vegetables and fruit. Some of these goods the US predominately imports and some of these it predominately exports . Reinterpreting S in our model as a subsidy to a single agricultural industry—corn—and subsuming the non-subsidized sector—coffee—in the Y industry would be sufficient to generalize our model to include such cases. However some goods are both imported and exported, such as vegetables and fruit. Some of this cross-hauling can be explained easily by the fact many countries are geographically large and diverse. For example, although apples are grown in Washington State, it may be cheaper for Alaskans to import them from British Columbia. Cross-hauling derived from this source could also be accommodated easily into our model by making the state, rather than the country, the unit of analysis.As discussed earlier, one of the means by which exotic species impose damage on the host country is through destruction of crops. In the interest of simplicity, throughout this paper we have assumed that industrial mix responds to producer prices but not to net harvest rates, such that producers do not engage in “averting behavior.” Farmers planting more corn and less wheat in response to the establishment of the Russian Wheat Aphid in the United States, or using costly pesticides to combat wheat aphids, are examples of averting behavior.

In an economy in which producers face undistorted—i.e. world—prices such averting behavior would reduce the magnitude of, but not change the sign of, crop damages imposed by biological invasions. If, however, producers initially faced distorted prices then biological invasions may actually generate net benefits to an economy. For example, the provision of subsidized water to agriculture in the US’s southwestern states induces the cultivation of water intensive crops, despite that region’s dry climate. Introduction into that region of a pest that preys on water intensive crops would induce a re-orientation of agriculture away from water intensive crops, offsetting at least to a partial extent the effect of the water subsidies and possibly even raising welfare.10 Of course we do not promote such introductions, as it would be superior to eliminate the inefficient subsidies to begin with. We offer this example merely to re-iterate the point from the literature on environmental double-dividends that pre-existing distortions alter the welfare impacts of policy changes, even possibly to the extent of changing the signs of those welfare impacts.Only a few years ago sustainable agriculture was considered peripheral to conventional agriculture and its institutional framework. Today, however, sustainability programs and efforts have been initiated all over the world and sustainability has become a major theme of many groups, including local and national agricultural research institutions, farmer associations, policy makers, and nongovernmental citizens organizations. This institutionalization is manifest in a number of ways – new books and journals devoted to sustainability; sustainable agriculture research and education programs in many agricultural universities and governmental agencies; organic food laws and certification programs; legislative initiatives that mandate various changes toward sustainability; increased popular consciousness about food safety; and higher sales of organic produce. Yet we shouldn’t let this widespread progress convince us that it is time to close off discussion on the meaning of sustainable agriculture. Too many key questions remain at the core of the sustainability debate.

The most fundamental of these is, “Who and what do we want to sustain?”1 Those within the sustainability movement answer this and related questions differently, based on their various positions in the food and agriculture system. Currently, there are many diverse goals and ideas included in the term “sustainable agriculture.”SUSTAINABILITY IN THE BALANCE This diversity presents an opportunity. As a relatively new concept, sustainable agriculture does not yet reflect a coherent vision of what is possible and preferable in agricultural production and distribution. This emerging discourse on sustainable agriculture thus represents a chance for a fundamental paradigm shift in the way we think about food and agriculture and an opening to develop a comprehensive vision of sustainability. It is important to continue to discuss sustainability’s meaning in this context because, “In adopting certain categories for social inquiry we also adopt a certain view of the social world, of its problem areas and of its fixed points, of the actions it makes available and ways in which their results are constrained.” Thus, the language of sustainable agriculture has a direct effect on our form of practical response and action in sustainable agriculture. How we conceptualize sustainability today will determine the extent to which sustainable agriculture will differ from conventional agriculture in the future.We find there is contention over which sorts of problems can legitimately be called sustainability problems, and there are differing viewpoints on the causes of non-sustainable agriculture. There are disagreements over the vision of sustainable agriculture, primarily over who should be the beneficiaries of sustainability. And there is debate over which strategies and practices will be most effective for developing sustainable agriculture. After discussing these view- points we offer our ideas on how we can begin to reformulate sustainable agriculture.Sustainable agriculture arose as a critique of and an alternative to conventional agriculture. A focus on agricultural sustainability first emerged in the U.S. during the energy crisis of the 1970s as people began to recognize the petroleum dependence of industrialized agriculture. The movement grew in response to the farm crisis of the 1980s and an increasing awareness of agriculturally related environmental problems. The primary problems cited in dominant discourse on sustainable agriculture relate to these crises. “Notable among these problems are the contamination of the environment by pesticides, plant nutrients, and sediments; loss of soil and degradation of soil quality; vulnerability to shortages of nonrenewable resources,plant benches such as fossil energy; and most recently the low farm income resulting from depressed commodity prices in the face of high production costs.”Some would add concerns about pesticides’ effects on consumer and worker health and on wildlife as problems leading to demands for agricultural sustainability.In sustainable agricultural science, the main problem addressed is that of the environment and conservation’s role in maintaining profits: “There is a growing awareness about the need to adopt more sustainable and integrated systems of agricultural production that depend less on chemical and other energy-based inputs. Such systems can often maintain yields, lower the cost of inputs, increase farm profits, and reduce ecological problems.”

While all sustainability advocates address the importance of preserving the environment and natural resources, social issues are less often cited as sustainability problems. For example, although many sustainability advocates are concerned with preserving family farms, the larger issue of systemic economic concentration in food and agriculture is rarely addressed. While the dominant discourse on sustainable agriculture raises important problems, there is a tendency to overlook issues such as hunger, poverty, gender subordination, and racial oppression – problems that also contribute to a lack of sustainability in food and agricultural systems. In general, we find that problems identified in dominant U.S. sustainability perspectives are usually framed without questioning the current economic and social structure within food and agriculture systems.Although the United Nations Food and Agriculture Organization explicitly recognizes the link between socioeconomic and agroecological prob- lems,7 the causes of non-sustainable agriculture are often not discussed in scientific texts on sustainability. Family farm and food safety advocates do, however, provide explanations of the problems they identify. Wes Jackson, for example, criticizes corporate agriculture for the concomitant destruction of the environment and the family farm and blames the lack of an ecological approach for an agriculture characterized by soil loss, fossil fuel dependence, and heavy chemical use.8 Another advocate of family farms, Marty Strange, suggests that “the most serious environmental problems in agriculture are those caused by technologies that make large-scale farming possible, and that sever the rewards of farming from the rewards of stewardship and husbandry.” In the same tradition, Wendell Berry decries the industrialization and mechanization of corporate agriculture and asserts that the current U.S agricultural system is unsustainable because of the continual attempt to get the highest possible production with the smallest number of workers.10 Particularly important for Berry is the erosion of cultural values associated with family farming, such as hard work, respect for place, respect for nature, and commitment to home and community. Food safety advocates cite the failure of government to adequately regulate pesticides 11 and lack of consumer awareness as primary causes of food contamination.We wonder, though, if these causes cited for non-sustainability, such as corporate agriculture, inadequate government regulation, and loss of respect for nature, do not themselves need to be explained. Why has corporate agriculture superseded family farming? Why isn’t an ecological approach standard in agricultural research? Why are environmental regulations insufficient or poorly enforced? In our view, there is a need to examine the relationship between the logic of current political economic structures and the causes of agricultural non-sustainability to find the answers to such questions. What role, for example, does the current mode of agricultural production, based on maximizing short-term profits and foreign exchange, play in causing agricultural problems? We must also examine the connection between non-sustainability and present power and decision-making structures at levels ranging from the individual farm to national policies. Who makes decisions in food and agriculture and who do they represent?

In most regions of the world farmers do not pay for the real value of irrigation water

I propose that considering future agricultural expansion data and promoting globalized conservation solutions for defining spatial priorities should be included in this toolbox for sustainability. Only by the careful analysis of future scenarios of agricultural expansion and other human activities will it be possible to predict their impacts on biodiversity and, most importantly, act effectively to reduce the worst impacts of human land use on the environment. Water is a crucial resource for life on Earth because it is irreplaceable in its role of sustaining the functioning of environment and societies. Humankind uses water resources for drinking, municipal needs, and a number of economic activities. Among them, agriculture is the most water-demanding, claiming more than 85% of human water consumption . Despite its important impacts on crop production, food security, and rural livelihoods, water often remains hidden in the economic valuation of agricultural assets. Unlike oil, it is seldom treated as a commodity and traded in the marketplace to generate revenues . Rather, it remains underpriced because users do not pay for its real value . Oftentimes farmers do not even pay for the provision costs associated with withdrawal and delivery . Thus, while crops use huge amounts of water, the price of agricultural products seldom accounts for the cost of water consumption. What is the value of water? How can it be determined? The valuation of water remains a difficult task because this natural resource is rarely traded and therefore its value cannot be determined from a market price. Of course, there are exceptions, such as bottled water, which accounts for less than 1% of human appropriation of water resources worldwide , the pricing of municipal water supply , or the few water markets existing around the world . In some of these cases, the market value reflects the extrinsic value of water, expressed both by the users’ willingness to pay and the willingness of water rights holders to accept compensation for relinquishing their water allocations . Water markets and water trading can be found in Australia, the United States, Mexico, Chile, China, Spain, and South Africa .

These are more exceptions than the rule because in most of the world there are no tradable water rights , the “conditio sine qua non” for the emergence of water markets . In other words,blueberry grow pot in many regions there are no water entitlements that can be sold or acquired through market transactions separately from the land. Rather, water is either tied to land’s property rights or treated as a public good, “res nullius” , or a common pool resource . Although not properly priced, water availability shapes the global patterns of agricultural production and trade and the associated flows of embodied or “virtual” water , which is the water consumed in the production of goods such as crops . In fact, water-scarce regions need to import agricultural commodities to meet their food demand . Even when water is not directly commodified, the goods it contributes to produce are. The value of the associated virtual water, however, is seldom accounted for . Likewise, water is implicitly acquired with agricultural land in the form of rainwater and sometimes also irrigation water when blue water resources are inherently appropriated with the land . This happens in regions where land ownership includes water rights or unregulated access to adjacent or underlying freshwater resources . Interestingly, while there are well-established methods to calculate the water resources that are virtually acquired with agricultural land , their economic value remains difficult to assess . Because water pricing is often viewed as a mechanism to promote a more efficient use of water resources, an international agreement on water valuation is sometime considered to be crucial to the achievement of an efficient and sustainable global water use, a point that has been discussed at the World Water Forum in the last two decades . The value of irrigation water in agricultural areas is an important piece of information for investors and financial groups engaged in the acquisition of land and water resources. Even in the absence of a water market,land and agribusiness investors would benefit from knowing more about the potential economic value of the water resources they are virtually acquiring with the land.

Indeed, the decision to invest along the banks of the Nile River or in areas suitable for rain-fed agriculture instead of targeting arid lands within the same regions would benefit from a combined hydrologic and economic analysis of the availability, productivity, and value of irrigation water. On the other hand, it could be argued that the valuation of water may favor its growing transnational control through the acquisition of water and land entitlements by self-interested agribusiness corporations. This may happen if, as a result of the valuation and commodification of land and water resources, peasants decide to sell land and water rights to realize short-term profits without having the opportunity to plan for the long-term economic development of their communities . At the same time, a major factor impeding planning for rural development is lack of awareness of the value of natural resources such as land and water. Indeed, local communities engaged in the negotiation of land and water concessions need to know the current and potential contribution of water resources to the creation of value in their farmland. Unbalanced power relations and asymmetry in the knowledge of the economic value of these assets are often major obstacles to the informed negotiation of land and water deals . Likewise, investments in irrigation infrastructure require an assessment of the increase in production and associated profits resulting from the use of irrigation. Indeed, farmers’ decision to adopt irrigation depends—among other factors—on the value generated by irrigation in the production process . There is a need for reliable and reproducible water valuation methods that—in the absence of markets—can be used to determine the value of water embodied in agricultural land and its products. The estimate of the value of water in the absence of market is often based on the marginal value produced by a unit volume of water . The literature on this subject is often based on inductive statistical/econometric methods determining the value of water from empirical data, or on deductive models that are fitted to the data . Both approaches typically require a wealth of data that are seldom available, particularly in the developing world .

These classes of methods fail to capitalize on process-based understanding of the underlying hydrological processes determining the role of water as a factor of production . More recently, some studies have proposed a mixed model in which one of the factors of production is estimated with biophysical models while the shadow price of groundwater is determined either by fitting a function of production to empirical data or by simulating the dynamics of crop growth accounting for their dependence on soil moisture and irrigation technology . Here we use a completely mechanistic biophysical method for the valuation of water in agriculture that can be used even when tradable water rights do not exist. We carry out this valuation analysis for the 16 major crops at the global scale on a 10-km grid and then map and critically analyze the results. Our approach allows for the worldwide valuation of water in agriculture and can be used to determine water’s contribution to the value of both crop production and agricultural land.ently planted in each location allows for an estimate of the maximum price farmers might accept to pay for irrigation water. If we look at the four major staple crops , we find that the global mean water values are $0.05, $0.16, $0.16, and $0.10/m3 for wheat, maize, rice, and soybean, respectively . The value of water for the production of maize, soybean, and rice is consistently higher than for wheat. These differences are the result of the combined effect of differences in crop price and in crop water use efficiency . The values of water for maize and rice are substantially higher in East Asia than in other regions of the world . Interestingly, for maize and rice the within-region variability in water value tends to be smaller than the variability among regions, potted blueberries while for wheat and soybean the water value variability tends to be relatively small both within region and across regions . Results presented in this manuscript refer to water withdrawals because farmers are more likely to be allocated—and consequently account for and keep track of—volumes of water withdrawals than water consumption . Values of water based on consumption are presented in SI Appendix as well as in Fig. 1B. As expected, the water values determined with reference to water withdrawals are lower than those determined with reference to water consumption and the difference depends on the efficiency of the irrigation system .

Expanding the analysis to the 16 major crops [≈70% of global food production ], we see that for all of them the global median and mean roughly range between $0.05 and $0.25/m3. The only exception is represented by potatoes, which consistently exhibit a much greater water value than the other crops with a median value of $0.67/m3 . The higher values of water for potatoes is due to their higher yields per unit volume of water application and their higher price compared to the other crops; however, despite their widespread use, potatoes contribute to only 2.1% of the global food calorie production and account for only 1.1% of the global irrigated areas . Variability in the mean water value across regions is overall smaller than that across crops and ranges from $0.09/m3 in South Asia to $0.42/m3 in Europe . With the current crop distribution, the global median and mean water values are $0.13 and $0.23/m3, respectively . Interestingly, even though the within-region water value can substantially vary , globally, the spread around these median and mean value is relatively small, with the 25% and 75% quartiles being $0.08 and $0.42/m3 smaller and greater than the median, respectively . We also provide an estimate of the maximum water values obtained considering—among all of the crops currently cultivated in every 10-km × 10-km pixel—the crop associated with the maximum local water value. These results show that the current crop distribution does not maximize water value . In this analysis we have considered the global areas cultivated with the 16 major crops. Each crop has its own irrigation water requirements, yield, and price, which leads to different water values, depending on the crop. In Fig. 4B we show the results for the crop that realizes the maximum value. Thus, while with the current crop distribution the median water value is $0.13/m3 , if we consider only the crops with the maximum value, the median of the maximum values around the world becomes $0.54/m3 . Interestingly, the variability in water value is greater for the maximum values than for the median values both across regions and within regions . The crops that maximize water value are potatoes in many regions of the world and sugarcane in South and Southeast Asia .The economic valuation of water is a sensitive matter because it can be the premise to water pricing, commodification, and privatization, which are often contentious issues . In fact,a large part of the public tends to think that water should be publicly owned because it is a natural resource that, like air, is essential for human life . Therefore, the valuation of water becomes particularly difficult when this resource is used not only for economic activities but also for environmental needs or the fulfillment of human rights such as drinking or sanitation. Instead of dealing with these uses, here we explicitly focused on the value of water in agriculture. In fact, in many cases they do not even pay for costs of water infrastructures and their maintenance and operation , which are often subsidized by governmental agencies . In addition to costs associated with the supply, treatment, storage, and distribution of freshwater resources, it is often argued that water itself should be sold to its users to avoid that it goes wasted or is used in economically inefficient ways .