From Water to Harvest: Exploring the Wonders of Hydroponic Agriculture

ABA is therefore necessary for the stomatal closure we observe in esb1-1. Te elevated ABA concentration we observe in leaves of esb1-1 compared to wild-type supports this conclusion. We also used the esb1-1sgn3-3 double mutant to test if SGN3 is involved in initiating this leaf ABA response. In leaves of the esb1-1sgn3-3 double mutant the elevated expression of a set of ABA signalling and response genes observed in esb1-1 is reduced to below that of wild-type . Further, the reduced stomatal aperture of esb1-1 is also recovered to wild-type levels in this double mutant . SGN3is therefore necessary for the ABA-dependent stomatal closure in response to the defective endodermal diffusion barrier in esb1-1. This raises the question of what links detection of a break in the endodermal diffusion barrier with ABA-driven closure of stomates in the leaf? Removal of endodermal suberin in esb1-1 expressing CDEF1 revealed a significant reduction in ABA-regulated gene expression, and a tendency to increasing stomatal aperture towards wild-type . Thus, increased suberin deposition in the endodermis of the esb1-1 root appears to play a partial role in the ABA controlled reduction in leaf transpiration. We have ruled out a role of local ABA signalling in controlling enhanced suberin deposition at the endodermis in esb1-1 . Using a similar strategy of expressing abi1 in the endodermis, in this case using the SCARECROW promoter , primarily active in the endodermis, we also show that in esb1-1 ABA signalling at the endodermis is not promoting stomatal closure or enhanced ABA signalling in leaves . We note that pSCR is also active in bundle sheath cell, and so ABA-signalling in these cells is also not involved in promoting stomatal closure in esb1-1. Furthermore,blueberry packaging containers enhanced ABA signalling in the endodermis is also not responsible for the initiation of the long-distance response of stomatal closure in leaves, and again it is more likely that suppression of ABA signalling is playing a role.

This can be seen in the fact that expression of abi1 in the endodermis, blocking ABA signalling, mimics the efect of esb1-1 on Lpr and stomatal aperture closure . However, these possibilities remain to be further explored. In contrast to these root-based or long-distance effects, the closure of stomata in leaves in response to a root-based CIFs/SGN3 derived signal is mediated by ABA locally in the leaves. We also note that the long distance signal connecting CIFs/SGN3 in roots with reduced leaf transpiration is currently unknown. Interestingly, a root-derived peptide has been recently identified as involved in long-distance signalling. In response to drought stress, CLE25 move from root to shoot and induces ABA accu-mulation in leaves and stomatal closure. Casparian strips have been suggested to play a critical role in forming a barrier to apoplastic diffusion to limit uncontrolled uptake and back fow of solutes from roots reviewed in . However, most Casparian strip mutants only appear to show fairly subtle phenotypic effects, and this has been a source of continued puzzlement. Here, we show that sensing damage to Casparian strips via leakage of the vasculature-derived CIF peptides from the stele into the cortex triggers a mechanism that inactivates aquaporins, promotes enhanced deposition of suberin limiting solute leakage in roots, and reduces transpiration in leaves, which all contribute to increasing solute concentration in the xylem . The overall outcome of this integrated response is a rebalancing of solute and water uptake and leakage. These physiological compensation mechanisms mitigate the loss of Casparian strip integrity, allowing relatively normal growth and development. A key part of this compensation mechanism is the ability of esb1-1 to limit water loss by the shoot by reducing stomatal aperture, in an ABA-dependent manner. This is clearly established by our observation that the esb1-1aba1 double mutant has severely reduced growth and seed production compared to either of the single mutants, and these growth defects can be partially supressed by the exogenous application of ABA .

The mechanisms we have identified are triggered by the loss of Casparian strips integrity. Such an event can occur during biotic stress including root nematodes infestation, and also during developmental processes such as lateral root emergence where Casparian strips are remodelled, suberin deposition occurs, and aquaporin expression is suppressed. Here, we describe novel outputs of the CIFs/SGN3 surveillance system that couple sensing of the integrity of the Casparian strip-based apoplastic diffusion barrier at the endodermis with pathways that regulate both solute leakage and hydraulic conductivity in the root . Long distance signals then connect these root-based responses with compensatory mechanisms in leaves which are mediated by local ABA signalling . Our dis-coveries provide a new framework which integrates our emerging understanding of the molecular development of the Casparian strip and suberin diffusion barriers with two of the major physiological functions required for plant survival – solute and water uptake.In recent years, California has tightened rules for reporting diversions of water for agriculture and other uses. One key challenge has been establishing workable standards for the collection of reliable data on relatively small and remote diversions — such as those for far-flung farms and ranches. Under new legislation, a certification program run by UC Cooperative Extension is helping to solve that problem. The State Water Resources Control Board views ac-curate diversion reporting as a key element of sound water management. “It’s incredibly important to monitor how much water comes into and goes out of the system,” says Kyle Ochenduszko, chief of water rights enforcement at the water board. Diversion reports are fed into a state database and support the orderly allocation of water resources by, for instance, enabling the board’s Division of Water Rights to inform water users when new requests to appropriate water might affect their own supply. Since 1966, the California Water Code has required diverters of surface water, with certain exceptions, to report their diversions to the water board. But in part because the water board lacked fining authority for many years, compliance was poor. In 2009, Senate Bill 8 gave the water board the authority to fine non-compliant diverters an initial $1,000, plus $500 for each additional day of failing to report.

Even so, SB 8 did not stipulate precisely how diversions were to be monitored. Rather, it required diverters to measure their diversions using the “best available technologies and best professional practices,” unless they could demonstrate that such technologies and practices were not locally cost-effective. That is, the requirement left wide latitude for interpretation. So things remained until 2015 — when Senate Bill 88 became law. This piece of legislation, passed amid a historically severe drought, directed the water board to draw up emergency regulations regarding water diversions. The regulations, once completed, required diverters of at least 100 acre-feet of water per year to hire an engineer or appropriately licensed contractor to install all monitoring devices. Now the requirements were clear. But the provision mandating installation by an engineer or contractor prompted an outcry from many smaller diverters, particularly those in remote areas of the state. For most diverters near sizable towns — Redding, say — complying with the regulations was manage-able, with expenses limited to the cost of a monitoring device and the services of an installer. But diverters in remote parts of Modoc County, for example, were looking at bigger bills, says Kirk Wilbur of the California Cattlemen’s Association. For such diverters, compliance might require importing an engineer or contractor from far away,blueberry packaging boxes which would entail significant travel expenses. If a site lacked electricity, as many do, the costs would pile higher . So how to reconcile the interests of the state’s diverters with those of the state? How best to balance the public and the private good? The answer, it turned out, was to empower diverters to install their own monitoring devices — with UCCE playing the empowering role. The idea originated with the Shasta County Cattlemen’s Association. It gained the support of the statewide Cattlemen’s Association. It took shape as proposed legislation in 2017 and was shepherded through the Legislature by Assemblyman Frank Bigelow . It breezed through both chambers with no votes in opposition — not even in committee. “All parties realized,” says Assemblyman Bigelow, “that Assembly Bill 589 would cut compliance costs and, as a result, increase compliance rates — which benefited both the regulators and the regulated community.” Essentially, AB 589 allows water diverters to in-stall their own monitoring devices if they successfully complete a monitoring workshop offered by UCCE. Further, it directed UCCE to develop the workshop in coordination with the water board. Khaled Bali, an irrigation water management specialist at the Kearney Agricultural Research and Extension Center, took the lead in drafting the coursework. “Then we met with the [water] board and got feedback,” Bali says. “We made changes until they said, ‘This looks good.’” Attendees at the workshops, which last three and a half hours, gain a solid foundation in the basic principles of diversion monitoring.

They learn how to monitor flows passing through a ditch, over a weir or through a pipe — or gathering in a pond. They learn how to build or install measuring devices appropriate for each type of diversion and how to calibrate those devices to comply with the state’s accuracy requirements. They learn how to navigate the water board’s rather detailed reporting system. Equipment for monitoring flows through open ditches might be limited to a tape measure, a timing device and a floating object. Installing a monitoring device for a diversion routed over a weir — a simple dam with an edge or notch that allows overflow — re-quires a bit more equipment. But once the installation is complete, the diverter need only read a staff gauge that shows the height of the water spilling over the weir’s crest . Diversions flowing through pipes must be outfitted with flow meters. Diversions feeding into a pond or reservoir can be monitored by tracking the depth of the water with a staff gauge, float or pressure transducer . So far, UCCE has offered the course in about 15 lo-cations, from Yreka to Bakersfield. According to Shasta County UCCE County Director Larry Forero — who teaches the $25 course along with Bali, Tehama County UCCE Advisor Allan Fulton and UC Davis–based UCCE Specialist Daniele Zaccaria — about 1,000 people had earned certificates of completion by early October. Even farmers and ranchers who divert less than 100 acre-feet per year are attending. “I’ve been floored,” says Wilbur, “by the number of diverters who have attended the course even though they aren’t required to — they want to better understand the regulations and make sure they’re doing the right thing.” It probably helps that the registration fee is a fraction of the cost of importing a faraway engineer. Due to their increasing use in a wide variety of beneficial industrial and consumer applications, ranging from use as a fuel catalyst, to chemical and mechanical planarization media, there have been increasing concerns about the potential environmental health and safety aspects of manufactured ceria nanomaterials.1,2 Ce is among the most abundant of the rare earth elements making up approximately 0.0046% of the Earth’s crust by weight .3 For example, Ce concentration in soils range from 2 to 150 mg kg−1 . 4 In Europe, the median concentrations of Ce were 48.2 mg kg−1 in soils, 66.6 mg kg−1 in sediment and 55 ng l−1 in water . There are many naturally occurring Ce containing minerals include rhabdophane, allanite, cerite, cerianite, samarskite, zircon, monazite and bastnasite.The existence of naturally occur-ring ceria nanoparticles is also likely and may play a key rolein controlling dissolved Ce concentrations,6 but precisely how the properties of naturally occurring ceria nanoparticles com-pare to manufactured ceria nanomaterials is unclear. There is concern that nanoceria, due to its small particle size and enhanced reactivity by design, may present unique hazards to ecological receptor species. Of critical importance are the redox properties of ceria which enables it to transition between CeIJIII and Ce, which are the key to understanding its potential toxicity.While there has been somewhat extensive investigation into the mammalian toxicity of ceria ,based on the present review, there has been considerably less effort invested into investigation of the environmental fate and effects of nanoceria. In this critical review, we discuss the likely points of environmental release along product life-cycles and resulting environmental exposure to nanoceria, methods of detection in the environment, fate and transport, as well as the available toxicity literature for ecological receptor species.

A prominent example of NbS in agriculture is the coconut -based farming system

Depending on the data, cache memory is a bridging solution for yield data for example.Acquired in-field moisture or temperature data which need to be displayed to the farmer with low latency a direct switch to the suggested resilient infrastructure must be given.Concrete solutions for machine data, which have been tested in the field, were shown in the iGreen project with the so-called “Machine Connector”.For data, only allowing low latencies, the LWN directly has to be used in case of an interrupted internet connection.Again, here farmers have to diagnose and define which data they need, with which latency, and accordingly design the FDFS.In any case, if farmers have to calculate with interruptions, a parallel, hybrid data acquisition, like in the suggested FDFS, seems best practice.On-farm data storage on the farm server can be erased if cloud computing of a certain task is completed and data safety is guaranteed.The digitization span amongst farmers reaches from no network coverage at all, to farms that use autonomous robots controlled with real time data.For the latter, our approach in the FDFS at Level V makes perfect sense.However, most farmers in a worldwide perspective have no internet at all or only a low bandwidth landline connection to the office area.Solutions that use, and should use, the prior way over an internet connection but without providing desktop solutions, are strongly limited from the start on such remote farms.These farms indicate most reasonable the concern of this paper and might directly take level four or five into account of their digitization process.Last but not least, it is difficult for farmers who already invested in and implemented proprietary solutions of a few OEM brands to switch to or integrate open, standardized, and flexible solutions.APIs and converter plugins are needed for seamless data exchange which is often in conflict with the business model of the manufacturer.Once more a case where it is the responsibility of the OEMs to provide interoperable solutions.Advantages of strengthened interoperability not just for the farmers are expected, but also for the OEMs who might integrate their innovations in the part wise proprietary environment of another OEM.Farms, as mentioned here, seem to be in the same situation as the partners of the iGreen project who decided on the following strategy to ensure interoperability: “iGreen touches on so many actors, that a traditional top-down, up-front standardization of document formats and APIs would be so costly and time-consuming that it would be impossible to realize within the frames of the project.Instead,rolling benches the iGreen project used semantic technologies as an attractive alternative to costly and time-consuming standardization efforts by committee”.

Nature-based Solutions seek to maximize nature’s ability to provide ecosystem services that help humans address issues such as climate change adaptation, disaster risk reduction, and food security.The IUCN defines NbS as “actions to protect, sustainably manage, and restore natural and modified ecosystems that address societal challenges effectively and adaptively, simultaneously providing human well-being and biodiversity benefits”.A key challenge in ecosystem management is the loss of agrobiodiversity as a result of agricultural intensification.NbS in agriculture can reduce the adverse environmental impacts of intensive modern agriculture and sustain agricultural production.Many traditional agricultural production systems, such as agroforestry, have the potential to address natural resource management challenges, provide societal benefits, and conserve biodiversity.They create complex and diversified farmsteads with the goal of producing sustainable and long-term outputs, as in ecological or sustainable agriculture.Low external input usage, integration of different life forms and sustainable intensification are the hallmarks of these cultural systems.Such traditional land use systems also represent the accumulated wisdom and insights of farmers who have engaged with the environment without recourse to outside in-puts, capital, or scientific skills over millennia of cultural and biological transformations and are often regarded as time-tested examples of sustainable land use practices; the tropical home gardens are a case in point.These are traditional multi-strata agroforestry systems , which provide a range of ecosystem services such as provisioning, regulating, supporting, and cultural services.Although coconut is cultivated in several parts of the tropics, it is the most important crop in Kerala – “the Land of Coconut Trees”.Indeed, the euphonious Malayalam word, Keralam , is derived from two root words: Kera, which means coconut tree, and Alam, which means land.Kerala is the south-western state of the Indian Union.The coconut palm is, in fact, the “nucleus” of the Kerala home gardens , around which the other constituents are orchestrated .Although agroecology emerged as a distinct branch of science in the early twentieth century, the ecological underpinnings of agriculture in Kerala are much older.

In fact, Krishi Gita, a 15th-century Malayalam poem, explains the environment-friendly cultivation systems of medieval Kerala, including that of coconut palms.This paper examines the autecological characteristics of coconut, besides the role of CBFS in providing nature-based solutions to various ecological challenges, with special reference to Kerala.It focuses on three specific questions: what natural resource challenges CBFS addresses, what ecosystem services CBFS provides, and what biodiversity outcomes CBFS offers.It also examines the functional dynamics and vegetation structure of complex coconut-based land use systems.Aspects like varietal development, cultural practices, and pest and disease management, which are discussed in detail elsewhere, are, however, not focused here.Coconut is one of the earliest among the domesticated plants.Based on the occurrence of two genetically distinct sub-populations corresponding to the Pacific and the Indo-Atlantic oceanic basins, Gunn et al.postulated two geographical origins of the coconut palm: Southeast Asia and the southern margins of the Indian subcontinent.India has a long history of coconut cultivation spanning over three millennia.The crop is inseparably intertwined with the socio-cultural heritage and economic well being of the people of Kerala, as in other coconut-growing regions of the world.It is ingrained in folklores and has been celebrated by poets over centuries.For instance, Krishi Gita, the 15 century text, describes the importance of coconut growing in the livelihood of the residents of medieval Kerala.Apart from being an oilseed crop of enormous significance , it also yields food, drinks, timber, and fibre, besides being an ornamental species of prominence.This astounding range of products and services from the palm justifies the sobriquet “Tree of Life” or “Kalpavriksha”.Being a portable source of diet, water, and fuel, it is thought to have played a pivotal role in pre-historic migrations and the growth of civilization in the wet tropics.According to the FAO statistics , the Philippines, Indonesia, and India are the three largest coconut-producing countries in the world, with 3.5, 3.0, and 2.2 million hectares, respectively.

With over 80% of the area and 62% of the global output, South and Southeast Asia and the Pacific Islands dominate the scene.Coconut is also popular in many other tropical and subtropical nations, including those along the African coasts and in LAC , where they grow naturally as well as in planted and managed stands.A large proportion of such planted and managed stands of the palm are in smallholder farms of size less than 5 ha; the farms in Asia, the main coconut-growing region of the world, are, however, much smaller.And in Kerala, more than 98% of the operational holdings are either small or marginal.Most coconut-growing areas were once forested and, in some regions like the Pacifific Islands, where coconuts are produced, the crop is still the primary cause of deforestation.For example, in Vanuatu , the development of large “coconut estates” became a dominant land-use activity during the 20th century by the Europeans, and forests and old tree-fallows were transformed into coconut plantations.A large number of smallholder coconut plantations that substantially altered the indigenous farming systems followed this.Thaman et al.reported a gradual shift away from the traditional mixed agroforestry systems in the Pacific islands in which fruit trees and other culturally useful trees,ebb and flow bench such as coconut, breadfruit , traditional banana and plantain clones , citrus , Malay apple and Polynesian vi-apple were dominant, to monocultural production of commodities.Likewise, detrimental environmental effects of coconut monoculture have been noted in Western Samoa, central Indonesia, and Vanuatu.Although tropical deforestation caused by palm oil production is well-known , deforestation by coconut oil production and its biodiversity implications are rarely discussed.Furthermore, the majority of coconut is produced in tropical island nations, where “endemism richness” – an index that combines endemism and species richness – exceeds mainland regions by a factor of 9.5 and 8.1 for plants and vertebrates, respectively, and deforestation may result in the extinction of the endemic species.Furthermore, conservationists classify coconut as an invasive species that threatens biodiversity in the Chagos Archipelago.However, such evidence is scarce elsewhere, and coconut plantations are an important part of the cultural landscape in many countries providing employment, food, and artisanal products, as well as playing an important role in ecological restoration.In Kerala, coconut palm is the most extensively cultivated crop.It grows virtually everywhere in the state.Kerala has a diverse range of land forms that includes mountains, riverine deltas, wetlands, and ecoclimatic conditions that range from high rainfall zones to rain-shadow regions.The soil, climate, flora and fauna of these ecoregions are also correspondingly diverse.The principal crops of the state, including coconut, are cultivated in most of these ecoregions since time immemorial.Coconut is a major crop in the lowlands of Kerala, but the midlands and the slopes of the highlands are also suited for its cultivation.The western seaboard, the shorelines of lagoons and backwaters, and the banks of creeks in Kerala are profusely flecked with this palm.

The palm abounds on the fringes of the meandering valleys that surround the numerous hills – a distinctive feature of the state’s topography.Despite being a prominent crop in the lowlands and midlands, coconut cultivation has gradually expanded to the high-altitude regions , which may not be ideally suited for the crop in terms of its eco-climatic requirements.Consistent with the importance of the palm in the bio-cultural legacy and livelihood of the people of Kerala, there was a dramatic increase in the area of coconut in the state during the second half of the 20th century.In fact, area under coconut increased by 106% between 1955 and 2000.Conversion of paddy fields and other croplands has contributed much to this so-called “coconut boom”, which, however, faded subsequently.Indeed, the state’s coconut area decreased dramatically between 2010–11 and 2015–16, but it increased significantly after that, by about 1,00,000 ha in 2018–19.It should be noted, however, that it is difficult to estimate the area under coconuts precisely due to a lack of standardized procedures for estimating areas when the species grows at different densities and is planted and nurtured as a crop either alone or in combination with other species.In multi-strata systems, extinction of incoming solar radiation by the tree canopies warrants the use of shade-tolerant or sciophytic species as inter-crops.Factors such as stage of development of coconut palms, growth habit/crown characteristics of the associated tree components and their planting geometry, determine stand leaf area index, and in turn, the magnitude of light extinction.Optical density of multi-species systems especially involving woody perennials are clearly lower than that of monocropping systems owing to the higher stand leaf area index in the former.In line with this, Kumar and Kumar, in an experimental study involving 17-year and 8-month-old coconut palms and three 3 year and 9-month-old dicot multipurpose trees, found that the stand leaf area index varied from 5.24 to 7.15 for coconut+ dicot multipurpose tree systems as opposed to 4.9 for coconut monoculture.Reduced light availability beneath the multi-strata canopy may reduce sub-canopy yields of some crops , although yield levels may also increase or remain the same in some situations, reflectsing differential understory performance of crops.Shade-loving/tolerant crops maintain positive net photosynthesis even when the understory irradiance is relatively low.Phenotypic plasticity in certain plant traits, particularly those morphological features for optimizing light capture, is also high in shadetolerant species, which helps to explain their improved understory performance.In an exploratory attempt, the understory species that are widespread in the CBFS were classified as “shade sensitive,” “shade intolerant,” “shade-tolerant,” and “shade-loving”.However, there may be varietal and cultivar differences in adaptability to shade even within the same species, which obscures such classification schemes.Wright et al.postulated that there are a few extremely shade-tolerant and a few extremely light-demanding species, with the bulk of species, however, having intermediate and hence overlapping light preferences.Herbs like colocasia or taro , elephant foot yam , ginger , tannia , turmeric , yams , and many medicinal and aromatic plants are widely recognized as examples of shade-loving/tolerant crops.

The respondent further underscores the need for precise models dealing with biology and living animals

Some respondents from the larger companies and cooperatives suggest that the attitudes might be affected by the perceived inconvenience that data gathering causes.They all believe that more farmers would have a positive view on it if it was made easier for them to collect it.However, there is also a sense that the data is not used optimally, partly because it is saved in different databases that are not interconnected.The responses from the respondents indicate that data is being gathered differently depending on the agricultural sector.For instance, many respondents in the dairy section state that there is a lot of data gathered, to a high degree on an individual level, on the farm animals.In contrast, arable farmers also collect data on almost all farms, but that data is not always as detailed.An arable farmer may collect remote sensing satellite data on its farm, but sometimes not with a resolution of square meters, but rather on a field or even farm level.The inputs, i.e.the resources added to the soil, are what would be interesting for the farmer to get decision support on, if one could see a beneficial correlation between input and output.One responding farmer with previous experience from the tech industry, believes that the problem with applying AI to arable farming is the lacking volume of interconnected data.The whole data chain is not connected today, he states.In practice, the input data taken during, for example, arable seeding is not properly connected to the output of the harvest.Additionally, the insights from the harvest are not used as a decision basis for the next seeding.Thus, the data loop is not closed, which it would need to be for AI to be efficient.This data gap combined with the large amount of uncertainty factors, such as unpredictable weather, is a technical hindrance to the learning of AI models.In the field of AI and machine learning, there is an important tradeoff between bias and variance.In the interviews, the respondents had different opinions on the matter.The concept was discussed with the respondents as ‘generalizability’ and ‘precision’ instead of their technical terms.Some respondents say that precision is extremely important since a technical solution that only predicts or detects something half of the time is useless.At the same time,hydroponic grow system other respondents say that as long as the predictions are slightly better than human predictions or detections then the model can be as general as one wants.

In fact, many respondents claim that there is a much larger market for standardized models than the ones that are too adapted after local needs.There is a tendency among arable farmers and corporations that they tolerate a higher degree of generalizability while livestock farmers need more precision.A respondent in the livestock farming sector claims that a farm would never really benefit from a technical solution that could only detect rut among the animals one out of three times.Of course, many respondents bring up that there is a need for balance between generalizability and precision, and that it would be optimal if there was some degree of customizability in that aspect so that each solution can fit each farm.One key concern for the development of smart farming technologies is ownership of the data.Most smart farming systems are created as closed technological ecosystems, with limited possibilities of sharing data in between each other.This technological segregation hinders the systems to share data with each other and is thereby an obstacle to the interconnection between systems.Descending from the rivalry between the major transnational agricultural technology companies, including the quest to both pin the users to their specific technological ecosystems and avoid giving their rivals a chance to create competitive technology, this structure is difficult to change.With that said, two respondents note a tendency for transnational agricultural technology companies to move away from technology that ensnares the user to their ecosystem, to more open data flow.Such open data flow is believed to create more value for the businesses and their users.Consequently, a higher degree of data is expected to be on open standards.Even if the companies providing the technology make some progress towards open data sharing, a couple of projects are created to facilitate the data sharing compatibility.GigaCow, a research project by the agricultural university SLU on data for dairy farms, aims to enable data sharing by automatically exporting the data from different milk robots over time.Such initiatives are welcome to most farmers.However, this is a third-party work-around solution and not as straight-forward as if all machines would automatically be open for data sharing.

Some respondents lift the potential threat towards online IT systems as a risk when implementing new smart farming technology.The risk of being hacked poses a threat both to farmers and to society at large.Focusing on society at large, a respondent from a governmental agency describes cyber security as a particularly important aspect of digitalization in agriculture.This respondent believes that such a data platform probably would be classified with an extremely high security and secrecy label and be managed by the Swedish Security Service SÄPO.Therefore, this could be regarded as a clear barrier for the development process of a common data platform.Nevertheless, the respondent adds that in case of potential cyber-threats it would be better to have the data stored on a common platform than with individual farmers, since people would be managing and looking after the platform to a much higher degree than farmers currently are securing their data.Even though these issues are mostly raised by the larger organizations and authorities, the threat is also acknowledged by some farmers.They believe that connected data platforms with weak security make the farm quite vulnerable to threats.However, one farmer commented that “it is not worse than having all money in a bank account, and that I trust today.”.Other respondents, both governmental agencies and farmers, recognize the IT systems as possibly vulnerable but are not necessarily worried.Instead, they reject the belief that lacking cyber security would pose a greater threat to agriculture than to any other sector in society.When it comes to digitalization of such a fundamental societal system such as the agricultural sector, many strategic decisions are of nationwide interest.Some of the interviewed respondents from larger organizations and authorities believe that there is a wide interest that the agricultural sector becomes smarter.However, farmers are themselves accountable for making this technological transition.Two respondents argue that there is a lack of initiatives from the state or from the large organizations to drive the propagation of digitalization forward in a structured manner.One respondent, working at a governmental authority, addresses the topic of nationwide interest in digitalizing the agricultural sector , stating that AI in agriculture is a natural step moving forward.The respondent says that there are a lot of internal discussions in governmental agencies regarding if and how they should take a more active leadership role in the digitalization of Swedish agriculture.The governmental official thinks that Sweden is behind with its digital development compared to other countries with weaker economic conditions and budgets for agriculture.

A natural first step, according to this respondent, is to create a common national data platform for all agricultural data to be compiled on.Still, this respondent sees no clear political ambition driving this change, while this could speed up the digital transition tremendously.Although there is no wish to ‘force’ farmers into using agricultural technology and digitalizing their businesses, it is a likely progress if there is a nationwide and political interest in going in that direction.As in any other industry, the agricultural sector is driven by the quest for increased profit.Money is a motivator, not only for larger agricultural enterprises but also for farmers.Therefore, the general low profitability in agriculture is a major problem for farmers.Optimization plays an important role for the often unprofitable Swedish agricultural farms to be competitive on the world market.Even though there are lots of subsidies connected to food in the European agricultural system, no farmer respondents recognize any subsidies for investments in new technologies at a farm-level.Instead, the technological transition that is supposed to lead to more sustainable food production or larger output is financed by the individual farmer.different farmers have distinct economic incentives to implement smart farming technologies in their work.Generally, there is one group of farmers that have less reason to care about implementing new technologies since they will have structures in place to reach their revenue in any case.This group often owns their own property and farmland.On the other hand, there are farmers that lease their farmland and therefore constantly must become more and more effective.It is not only a matter of farm ownership though, also the size of the farm affects the probability that smart farming technologies will increase profitability.With a small farm, farmer respondents believe it is difficult to profit from smart farming techniques.A farmer with a small farm describes that he cannot afford buying new equipment, such as a new tractor, himself.Upgrading the machine park is necessary for smart farming technologies to gather enough useful data.This can be linked to the major macro trend of consolidation of farms.Basically, this means that smaller farms cannot afford to compete with the larger ones that can use their competitive advantages of being larger.There is simply not enough profit in managing most small farms, a problem which forces many farmers to merge with neighboring farms.Another trend that impacts the agricultural sector is how technologies are sold and distributed.Today, indoor garden most technology is bought as a hardware which is often a huge expense for the farmer.However, slowly things are changing.There is a transition happening towards services being bought as ‘Software as a Service’ solutions.This allows for business models in which the sold hardware is much cheaper than today or even provided at no cost, while the farmer pays a fee to subscribe for using the set of hardware and software.One respondent from an agricultural cooperative foresees that this change will have major implications and wonders whether, in ten years from now, tractors will be sold solely as a rental service instead of as a product.To enable this, an enormous amount of data will be needed.

One communicated and discussed concern about implementation of smart farming technologies is the dependency it might create towards technology.Dependency on technology refers to a system that relies on automated or semi-automated activities based on often incomprehensible software, a constant power supply or Internet-access.The system itself is not problematic to any of the respondents.However, there are some concerns regarding the cases when this type of system fails.One respondent, from an organization, states that the usefulness of the system would be compromised if the communication infrastructure would somehow break.The concern is expressed in different ways and with different urgency.Livestock farmers express their concern about this since their activities revolve around living beings, whose comfort and health rely on the technological systems continuing to operate.Also, when it comes to dependency on technology, another aspect that several respondents mention is that some practical knowledge among farmers and advisors might be forgotten.One responding farmer believes that if he applies too much technology to his farm he would risk losing some of the local, tacit knowledge of the farm.Particularly, some local variations of the farmland he finds difficult to represent correctly with data.Since there are a vast number of connected parameters affecting how a crop at a specific place will grow, he fears that a program could miss some critical aspects.This may be linked to a certain expressed mistrust towards technology, that it needs to be double checked to make sure it is doing the right thing while working autonomously.In general, there is a positive attitude towards smart farming and what it could mean, to the agricultural sector as a whole and to farmers specifically.Incorporating smart farming technologies could mean that time and costs for activities, such as irrigating and fertilizing, are reduced.Therefore, farmers can better manage their time when using well-functioning new technology.One positive side effect of this is an improved work environment for the employees.With that in mind, researcher respondent R2 states that farmers are generally bad at valuing their time spent compared to the economic return.

In most regions of the world farmers do not pay for the real value of irrigation water

I propose that considering future agricultural expansion data and promoting globalized conservation solutions for defining spatial priorities should be included in this toolbox for sustainability. Only by the careful analysis of future scenarios of agricultural expansion and other human activities will it be possible to predict their impacts on biodiversity and, most importantly, act effectively to reduce the worst impacts of human land use on the environment. Water is a crucial resource for life on Earth because it is irreplaceable in its role of sustaining the functioning of environment and societies. Humankind uses water resources for drinking, municipal needs, and a number of economic activities. Among them, agriculture is the most water-demanding, claiming more than 85% of human water consumption . Despite its important impacts on crop production, food security, and rural livelihoods, water often remains hidden in the economic valuation of agricultural assets. Unlike oil, it is seldom treated as a commodity and traded in the marketplace to generate revenues . Rather, it remains underpriced because users do not pay for its real value . Oftentimes farmers do not even pay for the provision costs associated with withdrawal and delivery . Thus, while crops use huge amounts of water, the price of agricultural products seldom accounts for the cost of water consumption. What is the value of water? How can it be determined? The valuation of water remains a difficult task because this natural resource is rarely traded and therefore its value cannot be determined from a market price. Of course, there are exceptions, such as bottled water, which accounts for less than 1% of human appropriation of water resources worldwide , the pricing of municipal water supply , or the few water markets existing around the world . In some of these cases, the market value reflects the extrinsic value of water, expressed both by the users’ willingness to pay and the willingness of water rights holders to accept compensation for relinquishing their water allocations . Water markets and water trading can be found in Australia, the United States, Mexico, Chile, China, Spain, and South Africa .

These are more exceptions than the rule because in most of the world there are no tradable water rights , the “conditio sine qua non” for the emergence of water markets . In other words,blueberry grow pot in many regions there are no water entitlements that can be sold or acquired through market transactions separately from the land. Rather, water is either tied to land’s property rights or treated as a public good, “res nullius” , or a common pool resource . Although not properly priced, water availability shapes the global patterns of agricultural production and trade and the associated flows of embodied or “virtual” water , which is the water consumed in the production of goods such as crops . In fact, water-scarce regions need to import agricultural commodities to meet their food demand . Even when water is not directly commodified, the goods it contributes to produce are. The value of the associated virtual water, however, is seldom accounted for . Likewise, water is implicitly acquired with agricultural land in the form of rainwater and sometimes also irrigation water when blue water resources are inherently appropriated with the land . This happens in regions where land ownership includes water rights or unregulated access to adjacent or underlying freshwater resources . Interestingly, while there are well-established methods to calculate the water resources that are virtually acquired with agricultural land , their economic value remains difficult to assess . Because water pricing is often viewed as a mechanism to promote a more efficient use of water resources, an international agreement on water valuation is sometime considered to be crucial to the achievement of an efficient and sustainable global water use, a point that has been discussed at the World Water Forum in the last two decades . The value of irrigation water in agricultural areas is an important piece of information for investors and financial groups engaged in the acquisition of land and water resources. Even in the absence of a water market,land and agribusiness investors would benefit from knowing more about the potential economic value of the water resources they are virtually acquiring with the land.

Indeed, the decision to invest along the banks of the Nile River or in areas suitable for rain-fed agriculture instead of targeting arid lands within the same regions would benefit from a combined hydrologic and economic analysis of the availability, productivity, and value of irrigation water. On the other hand, it could be argued that the valuation of water may favor its growing transnational control through the acquisition of water and land entitlements by self-interested agribusiness corporations. This may happen if, as a result of the valuation and commodification of land and water resources, peasants decide to sell land and water rights to realize short-term profits without having the opportunity to plan for the long-term economic development of their communities . At the same time, a major factor impeding planning for rural development is lack of awareness of the value of natural resources such as land and water. Indeed, local communities engaged in the negotiation of land and water concessions need to know the current and potential contribution of water resources to the creation of value in their farmland. Unbalanced power relations and asymmetry in the knowledge of the economic value of these assets are often major obstacles to the informed negotiation of land and water deals . Likewise, investments in irrigation infrastructure require an assessment of the increase in production and associated profits resulting from the use of irrigation. Indeed, farmers’ decision to adopt irrigation depends—among other factors—on the value generated by irrigation in the production process . There is a need for reliable and reproducible water valuation methods that—in the absence of markets—can be used to determine the value of water embodied in agricultural land and its products. The estimate of the value of water in the absence of market is often based on the marginal value produced by a unit volume of water . The literature on this subject is often based on inductive statistical/econometric methods determining the value of water from empirical data, or on deductive models that are fitted to the data . Both approaches typically require a wealth of data that are seldom available, particularly in the developing world .

These classes of methods fail to capitalize on process-based understanding of the underlying hydrological processes determining the role of water as a factor of production . More recently, some studies have proposed a mixed model in which one of the factors of production is estimated with biophysical models while the shadow price of groundwater is determined either by fitting a function of production to empirical data or by simulating the dynamics of crop growth accounting for their dependence on soil moisture and irrigation technology . Here we use a completely mechanistic biophysical method for the valuation of water in agriculture that can be used even when tradable water rights do not exist. We carry out this valuation analysis for the 16 major crops at the global scale on a 10-km grid and then map and critically analyze the results. Our approach allows for the worldwide valuation of water in agriculture and can be used to determine water’s contribution to the value of both crop production and agricultural land.ently planted in each location allows for an estimate of the maximum price farmers might accept to pay for irrigation water. If we look at the four major staple crops , we find that the global mean water values are $0.05, $0.16, $0.16, and $0.10/m3 for wheat, maize, rice, and soybean, respectively . The value of water for the production of maize, soybean, and rice is consistently higher than for wheat. These differences are the result of the combined effect of differences in crop price and in crop water use efficiency . The values of water for maize and rice are substantially higher in East Asia than in other regions of the world . Interestingly, for maize and rice the within-region variability in water value tends to be smaller than the variability among regions, potted blueberries while for wheat and soybean the water value variability tends to be relatively small both within region and across regions . Results presented in this manuscript refer to water withdrawals because farmers are more likely to be allocated—and consequently account for and keep track of—volumes of water withdrawals than water consumption . Values of water based on consumption are presented in SI Appendix as well as in Fig. 1B. As expected, the water values determined with reference to water withdrawals are lower than those determined with reference to water consumption and the difference depends on the efficiency of the irrigation system .

Expanding the analysis to the 16 major crops [≈70% of global food production ], we see that for all of them the global median and mean roughly range between $0.05 and $0.25/m3. The only exception is represented by potatoes, which consistently exhibit a much greater water value than the other crops with a median value of $0.67/m3 . The higher values of water for potatoes is due to their higher yields per unit volume of water application and their higher price compared to the other crops; however, despite their widespread use, potatoes contribute to only 2.1% of the global food calorie production and account for only 1.1% of the global irrigated areas . Variability in the mean water value across regions is overall smaller than that across crops and ranges from $0.09/m3 in South Asia to $0.42/m3 in Europe . With the current crop distribution, the global median and mean water values are $0.13 and $0.23/m3, respectively . Interestingly, even though the within-region water value can substantially vary , globally, the spread around these median and mean value is relatively small, with the 25% and 75% quartiles being $0.08 and $0.42/m3 smaller and greater than the median, respectively . We also provide an estimate of the maximum water values obtained considering—among all of the crops currently cultivated in every 10-km × 10-km pixel—the crop associated with the maximum local water value. These results show that the current crop distribution does not maximize water value . In this analysis we have considered the global areas cultivated with the 16 major crops. Each crop has its own irrigation water requirements, yield, and price, which leads to different water values, depending on the crop. In Fig. 4B we show the results for the crop that realizes the maximum value. Thus, while with the current crop distribution the median water value is $0.13/m3 , if we consider only the crops with the maximum value, the median of the maximum values around the world becomes $0.54/m3 . Interestingly, the variability in water value is greater for the maximum values than for the median values both across regions and within regions . The crops that maximize water value are potatoes in many regions of the world and sugarcane in South and Southeast Asia .The economic valuation of water is a sensitive matter because it can be the premise to water pricing, commodification, and privatization, which are often contentious issues . In fact,a large part of the public tends to think that water should be publicly owned because it is a natural resource that, like air, is essential for human life . Therefore, the valuation of water becomes particularly difficult when this resource is used not only for economic activities but also for environmental needs or the fulfillment of human rights such as drinking or sanitation. Instead of dealing with these uses, here we explicitly focused on the value of water in agriculture. In fact, in many cases they do not even pay for costs of water infrastructures and their maintenance and operation , which are often subsidized by governmental agencies . In addition to costs associated with the supply, treatment, storage, and distribution of freshwater resources, it is often argued that water itself should be sold to its users to avoid that it goes wasted or is used in economically inefficient ways .

Fertilizers are generally considered risk-increasing inputs

Adverse shocks might have a direct impact on the production of rural households by destroying output and physical assets.They might also have an indirect effect by altering farmers’ behavior towards risks.Under dysfunctional and flawed insurance markets, rural households in developing countries have become more risk-averse after experiencing co-variate and idiosyncratic shocks.However, just a few studies take shock experience and farmers’ risk attitude in examining their impacts on crop production.While these previous studies provide important insight, there are a number of research gaps that need further investigation.First, the endogeneity of risk aversion has not been addressed.Second, while rural households in developing countries have to cope with a wide range of shocks and production risks, previous studies mainly considered droughts and crop pests in the analysis disregarding other shocks such as floods, storms, and diseases.Third, previous studies did not examine how changes in farmers’ risk attitude impact farming efficiency to validate whether farmers’ application of pesticides and fertilizers is efficient, especially for risk-averse farmers.Against this background, we use a panel dataset collected in Thailand to examine the impacts of risk attitudes on fertilizer and pesticide use, and investigate the effect of adverse shocks and risk attitudes on technical efficiency in rice production.Thailand is relevant because agricultural production plays an important role in its rural economy.Addressing these research questions is necessary for policy responses to the harmful impacts of the inefficient application of synthetic fertilizers and agrochemicals on rural households’ production and the environment.The rest of the paper is as follows.Section 2 reviews the literature.Section 3 introduces the study sites and data.Section 4 describes the methods for data analysis.Section 5 discusses the findings.Section 6 concludes with policy recommendations.Although the relationship between risk attitude and input application has been examined in a few studies,dutch bucket hydroponic the findings on the roles of pesticides and fertilizers show mixed directions.

However, they could also play a risk decreasing role.For instance, Rajsic et al.found that nitrogen was a risk‐increasing input, implying that risk‐averse farmers tend to apply less nitrogen.This finding is supported by Möhring et al..On the contrary, Khor et al.stated that less wealthy farmers had a lower level of fertilizer use when their risk aversion increased.This finding aligns with Salazar and Rand that fertilizers are risk-decreasing inputs.Farmers who are more unwilling to take risks might overuse fertilizers because they think the crops need an additional amount of fertilizers.With regard to pesticides, a key motivation behind the application of pesticides is to provide a means of insurance against yield losses/damages caused by pests and diseases.These studies revealed that the higher the degree of uncertainty regarding pests’ damages, the higher the volume of pesticide application, despite any given levels of pest infestation and pesticide costs.Liu and Huang confirmed the risk-reducing role of pesticides.Nevertheless, pesticides could also play a risk-increasing role.Möhring et al.pointed out that risk attitudes affect differently on pesticide use depending on the types of pesticides.Recently, Salazar and Rand examined the impacts of production risks on pesticide use and concluded that pesticides are risk increasing inputs when more risk-averse rice producers apply fewer pesticides.Although these previous studies provide important insight on the association between risk attitude and input application, there are a number of research gaps that need further investigation.First, farmers in developing countries live in a highly vulnerable environment with a wide range of adverse shocks.However, only a few studies simultaneously take these aspects into account when estimating the impact of risk attitude on crop production.Rural households’ behavior under risks might explain low agricultural productivity, vicious cycles of poverty, and determination of risk-aversion in the loss domain to maximize investment decisions.Uncertainties caused by adverse shocks affect rural households’ risk attitudes that might lead to improper applications of inputs and, therefore, reduce technical efficiency.In this case, their fear of uncertainties may encourage them to apply more inputs than efficient levels, and this overuse is wasteful and harmful for the environment and their health.As a result, farmers with high levels of risk aversion could culminate in economic decisions that lead to relatively less income.Thus, accounting for diverse shock types in estimating input application still deserves further attention.Second, farmer’s risk attitude is endogenous.There is a significant and robust linkage between risk aversion and wealth levels in the form of income or assets of the households.

Farmers’ risk attitude can also be affected by household characteristics such as age, education, and gender.Externalities can further influence the risk aversion of rural households in the form of adverse shocks.Therefore, estimations of input use and risk preferences ignoring these aspects might produce biased results due to the problem of endogeneity.Third, farmers’ risk aversion might change overtime; however, most previous studies on risk attitude and input application in developing countries relied on cross-sectional data because long-term panel data with information on risk aversion might not be available.Thus, using panel data for this type of study is relevant to produce more reliable evidence since it allows to control for unobserved sources of heterogeneity.Hence, our study contributes to filling these research gaps.We simultaneously examine the impact of risk attitudes and shocks on input application and technical efficiency in rice production.By employing a balanced panel dataset of rice producers in Thailand, we first investigate the association between risk attitude and input use in the context of shocks.We control for the potential endogeneity of risk attitude by employing an instrumental variable regression.Then, we estimate the technical efficiency in rice production through a stochastic frontier model for panel data proposed by Greene to justify the effects of improper input application caused by farmers’ risk attitudes and shocks.One of the advantages of this model is that it allows us to estimate time-variant efficiency and can distinguish the unobserved heterogeneity from the inefficiency component.The findings are expected to enrich the literature on risk attitude and chemical input application and provide useful insight for formulating public policies to mitigate the negative impacts of shocks, improve production efficiency, and reduce the harmful effects of chemical overuse on the environment.Data for this research are from the “Poverty dynamics and sustainable development: A long-term panel project in Thailand and Vietnam ”, funded by the German Research Foundation.This project aims to generate a better and in-depth understanding of income and vulnerability to poverty dynamics in rural regions of the emerging economies of Thailand and Vietnam.Following the guidelines of the Department of Economic and Social Affairs of the United Nations , the sampling process included a three-stage stratified random sampling procedure based on the administrative system of each country.In Thailand, the survey was conducted in three provinces, namely Buriram, Nakhon Phanom, and Ubon Ratchathani , where majority of the households live in rural area and are dependant on agriculture for their livelihood.In the first stage, sub-districts were selected in each province.Then, two villages were chosen with a probability proportional to the size of the population.At the third stage, a random selection of ten households was made based on the list of all households in the sampled villages with equal probability,Klasen and Waibel for detailed information of the survey’s designation and implementation.

For this research, we use a balanced panel of 1220 rice farmers collected in 2013 and 2017.In this survey, the information of risk attitude is a self-assessment scale similar to the one in the German Socioeconomic Panel conducted by the German Institute for Economic Research.In this self-assessment, the respondents were asked to self-evaluate their risk attitude on a shown scale ranging from zero to ten.Although this kind of self-assessment might not perfectly reflects risk attitude, it has been validated as an appropriate indicator for respondents’ risk preferences and has been widely applied in studies on risk preferences.With regard to shock experience, the respondents were asked to report shock events that they experienced in the reference period “Was your household affected by any of the following [events] between 1st May 20XX to 30th April 20XX”.The length of the reference period was defined by the gap between the current and previous waves.In this research, we focus on weather shocks , crop pests and diseases.We take the respondents’ exposure to shocks in the last 12 months into account as indicators of shock impacts such as production costs, yield, and efficiency are based on a 12-month recall period.We prevent misreported shocks of respondents by cross-checking between reported shocks and their losses due to the events.Then, we generate a dummy variable of households who are exposed to weather shocks,dutch buckets system crop pests and diseases.These reported shocks are strongly relevant to agricultural production in rural areas in developing countries.In the TVSEP data, input costs are recorded with a wide range of cost categories such as land preparation, seedling, weeding, fertilizers, pesticides, irrigation, harvest costs, and other costs.The other costs include additional costs that do not fit any in the listed cost categories, for example, of pre-processing before selling.This study uses fertilizer volume, fertilizer expenditure, and pesticide expenditure as key variables to analyse the impacts of farmers’ risk attitudes on input applications.We use the expenditure on pesticides instead of quantity use because the data do not record the amount of pesticides.We control for price differences by using constant monetary values adjusted to 2005 prices.Besides key variables, namely farmers’ risk attitudes, rice production, and shocks, we control for other characteristics of rice farm households such as household’s demographic characteristics, farming characteristics, physical capital, and village characteristics.Table 1 provides a descriptive summary of the data.The descriptive statistics show significant differences in rice output, expenditures on fertilizers, pesticides, seedling, weeding, irrigation, and other costs, but not the fertilizer quantity, land preparation costs, and harvest costs between 2013 and 2017.While the use of inputs is higher, the rice productivity was lower in 2013 than in 2017.

The average farming area of rice farmers in Thailand is about 3.24 hectares , and approximately two household labourers engage in farming activities.The experience of shocks appears to be different over time.Particularly, farmers reported more weather shocks in 2013 but almost the same level of crop pests in 2013 and 2017.Overall, farmers who experience shocks appear to significantly have lower rice yield, lower expenditure on land preparation, higher expenditure on fertilizers, pesticides, seedling, and other costs, while fertilizer use and expenditures on weeding, irrigation, and harvest are not significantly different.Households experiencing shocks have larger farming areas and more household members engaging in agriculture than non-shock households.Households with shock experience also tend to have a lower level of willingness-to-take risks than the households without shock experience.Table 2 shows the demographic characteristics, farming characteristics, physical capital, and village characteristics of rice farmers in Thailand.The average age of the households’ head is about 60 years old with around five years of schooling.The household size and dependency ratio are significantly different both between 2013 and 2017 and between shock and non-shock groups.On average, rice farm households in Thailand have about five members.The average distance from farmers’ house to all land plots is 2.23 km.The village characteristics show that the vast majority of households in rural Thailand have access to electricity , but only a small percentage of them have cable internet at home.The instrumented risk attitude variable shows a negative impact on input applications with a significance at less than 10% level.This implies that both fertilizers and pesticides can be considered risk-reducing inputs in rice production in Thailand.The estimations of fertilizer use in both quantity and monetary values show almost the same effect of farmers’ risk attitudes on the application of fertilizers.In other words, the more the farmers avoid risks, the more they apply fertilizers and pesticides.This also points out that becoming more risk-averse influences them to apply more inputs, even though these applications are improper.Our results remain consistent with lagged values of risk attitudes from the previous waves.Compared with a similar rice exporting country, our results of the correlations between risk attitude and input use support the findings from Salazar and Rand that fertilizers are risk-decreasing inputs in Vietnam, but pesticides have an opposite role.This difference can be because of the intensive level in rice production between the two countries or the biased results from the endogeneity problem unaddressed in their estimation.In short, uncertainties motivate rice farmers to use more fertilizers to enhance crops production because of their aversion behavior to losses.Besides, Salazar and Rand found that droughts negatively affect pesticides use.This is contrary to our findings.

Dietary changes are driving the percent land use changes for rice and specialty crops

Several articles discuss how smart farming practices could narrow the productivity gap between developing and industrial countries by increasing competition and raising the standard of living Though much of the focus of smart farming constructs is on the fusion of analytical and mechanical innovations and the potential benefits for agricultural production, smart farming will also drive changes in societal structures, the economy, business models, and public policy as it relates to agriculture.Lombardi et al.and Klerkx et al.argue that social innovation initiatives brought about by smart farming could provide opportunity to strengthen relationships among rural populations, improve social networking and engender a new sense of ‘responsible professionalism’, which may prevent rural marginalization.On the other hand, innovative changes could have negative socio-ethical implications, such as widespread technical unemployment due to automation, cultural changes in farming practices from a “hands-on” approach to a data driven approach.Furthermore, farmers may experience an identity crisis, especially if they do not provide input to data driven decision-making.Other misgivings expressed by Bronson are that research and investment in smart farms are biased towards large-commodity crop farmers,strawberry gutter system and do not address the needs of medium-sized and small-sized farm holders.Smart farming solutions in the U.S.and Canada have created ‘lock-in’ technologies, for example a packaging of proprietary crop seeds, specialized fertilizer and pesticide combinations, sensor monitoring systems and software that contains hidden algorithms to manage the data from the sensors and have been used to maximize crop production.Today, the product service system is a common business model in many industries and is closely linked to innovation and sustainability of businesses.The PSS facilitates monopolistic opportunities for large agrochemical companies.

Rotz et al.warns that historically, the consequences of advanced technologies cause deleterious effects such as land consolidation and cost-price squeeze that adversely impact small scale and marginalized farmers.Marketing and distribution are critical towards a smooth transition from traditional farming to smart farming and must also be addressed to ensure successful transfer of farm-holders’ rights.Existing reviews on smart farming tend to have either a singular focus on the advanced technologies or have a heavy slant towards the political economic aspects of smart farming.This review juxtaposes technological advantages and disadvantages of smart farming with social benefits and social challenges by comparing the status of smart farming solutions between the U.S.and South Korea, 1) beginning with a discussion of agricultural resources and production systems; 2) briefly describing the challenges facing sustainable agricultural production; 3) investigating the frameworks and reasonings for the smart farming solutions developed; and 4) identifying the potential positive and negative impacts that could result from the implementation of smart farming solutions.A discussion of each of these four topics as they pertain to either the U.S.or South Korea provides insight as to reasoning for each country’s approach to smart farming solutions, predicted benefits and potential negative impacts that smart farming could have on the actors involved in agricultural production.The research method used in this study was a literature survey, searching on Scopus and Science Direct databases using “Smart Farming” in the title and key words of published journals.Agricultural data was also collected from FAOSTAT, USDA-NAS and USDA-FAS, news articles, country reports, and books.The data was used to provide a comparison of agricultural resources, challenges, and approaches to smart farm solutions between the U.S.and South Korea to understand each country’s reasoning for pursuing smart farming solutions.Because there is a dichotomy in opinion regarding the positive impacts from the technological advances of smart farming and the potential negative societal impacts, this article includes a description of the positive and potential negative impacts from the two different approaches pursued by the U.S.and South Korea.Information is also provided from the field experience and communication that the authors have in working with producers and agriculture industry members within their own country.

In 2020, approximately 363 million ha, 37% of total land area in the U.S., was under agricultural production with more than 2 million open-field farms in operation.At least 34% of the farmed area was cultivated with grain crops for animal feed, such as corn and sorghum, while acreage in soybean and wheat were roughly 25% and 13% of the total cultivated area, respectively.Acreage for orchards, vegetables and melons represented less than 3% of total acreage in production, but these crops contributed to more than 24% of the value of the principal crops grown in the U.S..Spatial distribution of these major crops shows that grain crops are grown mostly throughout the Midwest and in the Northern and Southern Plains regions.Cotton and soybeans are grown mainly in the southern region, while specialty crops are more abundant in the coastal regions near California and Florida.The average U.S.farm size in 2020 was 180 ha , and the trend continues towards larger-sized farms.Organic farming is important to mention as it represents 5% of agricultural sales and annual sales have increased by 31% between 2016 and 2019.Certified organic acres operated in the U.S.in 2020 totaled 2.23 million ha.Of this acreage, approximately 1.42 million ha produced organic crop commodities.The reported area dedicated to food crops under greenhouse production was 1,321 ha.Most crop producing farms in the U.S.are family owned , and many families are members of agricultural cooperatives, existing as independent private businesses to enable better access to financing, supplies and markets.In South Korea, approximately 22% of land is arable, while the remaining land is mountainous or urbanized.Agriculture in South Korea strives to combine cultural heritage, societal needs, while emphasizing adaptation to local conditions and maintaining rural livelihoods.The total area cultivated for agriculture in South Korea in 2019 was 1.58 million ha, representing a decrease of 29% from 1975 mainly due to land development for industrial complexes and residential housing.While agricultural acreage overall is decreasing in South Korea, farm size in the past 45 years has been increasing from 0.94 ha to 1.57 ha.Acreage for rice paddy fields has also experienced a downward trend in the past 45 years.However, rice continues to be the dominant crop grown in South Korea.In 2020, 52% of the total agricultural area was planted with rice and the remaining 48% of agricultural acreage was diversified towards production of other grains, vegetables, fruits, specialty crops, and flowers , data is from FAOSTAT.While the cultivated area in the open fields decreased, the cultivated area in protected facilities increased by 7.2% per year since 1979, and the absolute acreage in 2016 was approximately 83,629 ha.

Fifty percent of the greenhouse acreage is dedicated to vegetable and fruit production, 27% is relegated to condiment and root vegetables, 10% is dedicated to leafy and stem vegetables, 9% is devoted to fruit trees, and the remaining 4% is for flowering plants.The spatial distribution of the main crop types produced within the major provinces are shown in Fig.4.In the U.S., river systems, reservoirs and aquifers play an important role in supplying water for everyday life.Total water withdrawals from surface and groundwater sources in the U.S.per day in 2015 were approximately 1.22 billion m3.Roughly 70% of the freshwater withdrawals are from surface-water sources making precipitation and snow pack data essential for supply forecasting of surface-water sources.Major withdrawals in the west are predominately for irrigation, while those in the east are for thermoelectric power.Daily withdrawals for agriculture represented 39.7 % of total water use in the U.S.in 2015, of which nearly 50% are from groundwater sources.Dam structures have been used to increase water storage capacity and distribution for agricultural production and to decrease climate uncertainty.Pressurized irrigation systems, mostly center pivot sprinklers, dominate the method of application to irrigated acres across the U.S..Total annual water resources in South Korea amount to approximately 132.3 billion m3.Annual water use in 2014 was reported to be 37.2 billion m3.Water use among agricultural, industrial and household sectors were 40.9%, 6.2 % and 20.4 % of the total annual water used.Since two-thirds of the topography in South Korea is mountainous, most rivers drain into reservoirs built to store runoff and supply water during the dry season.However, a constant supply of quality water is difficult to manage as roughly 43% of surface water is lost through evaporation and soil penetration, while during the rainy season,grow strawberry in containers run off is lost in floods and estuaries.Data summarizing natural resources of land and water are shown in Table 1.Throughout the U.S.there is competition for water between sectors and states.Governance of water is different in each of the fifty states.Historically state laws address statutory guidance for water use and quality, but governance policies, ownership type , and levels of enforcement vary from state to state.In many states, groundwater management districts comprised a variety of interest groups and local farmers establish management plans for conservation, recharge and preservation of groundwater resources for municipal and agricultural water use.Limited quality water resources due to the depletion of groundwater from the Ogallala Aquifer in the Great Plains region in south of Nebraska, and drought conditions in the western and south-central U.S.continue to threaten crop production and reduce natural stream flow and snow pack.

In South Korea, rural regions are vulnerable to water deficits in irrigation districts due to seasonal variations in precipitation and water quality issues.Estimation of agricultural water demand is critical for long-term planning and management.In recent years, available agricultural water resources were gradually diminished due to water shortages caused by drought and heat waves.Climate variability also makes it difficult to estimate supply and demand.Climate variability and climate change have altered the distribution of water storage and water fluxes in the U.S..Hydrologic vulnerability maps show that temperature and potential evapotranspiration consistently project a high vulnerability of the western states to climate conditions.Direct effects of climate change on crops and livestock include an increase in: annual average and seasonal air temperatures, growing season length, number of hot days and hot nights, variable precipitation patterns, and higher concentrations of CO2..It is estimated that these effects on crop production will continue to be spatially and temporally variable across the continental U.S., especially across counties in the Midwest where grain crops are the predominant crop type.It is generally accepted that in some regions, predicted yields will increase while in other regions, yields will decline.States in the northern part of the country are expected to see an increase in precipitation along with an increase in air temperature and growing season length.Yu et al.projected that by 2050, increasing air temperature due to climate change will lead to a yield decrease in corn and soybeans in the U.S.by at least 13% and 57%, respectively.This forecast assumes that climate-neutral bio-technical changes will continue to increase corn and soybean yields at annual rates like those in the past 45 years.Suttles et al., using SWAT simulations, projected that stream flow would increase causing flooding, while base flow will decrease leading to extremely low flows in all future scenarios of land use and climate change in the southeast U.S.Changes in climate and groundwater storage will affect future irrigated areas and likely affect public policy.The Korean peninsula is also highly impacted by climate change.For the past century, the average ambient temperature in South Korea has risen by 1.1 °C , and precipitation has increased by almost 160 mm annually.Furthermore, there is a growing trend of longer summer and shorter winter seasons.Currently, South Korea experiences a 4 to 6-year cycle of extreme droughts and rainfall events that result in extreme heat waves and flooding under the East Asian monsoonal circulation.The country’s exposure to extreme conditions including total annual precipitation, daily maximum rainfall, drought duration and drought severity is projected to continue to be spatially variable and occurrences are likely to increase if greenhouse gases continue to be released at their current rate.The agricultural sector contributes nearly 3.4% to the total GHG emissions in South Korea, of which 58% is from crop cultivation and 42% is attributable to livestock farming.Using long-term spatial and temporal data, Nam et al.showed that significant differences in annual reference evapotranspiration have occurred in the Midwest and Southwest regions of the peninsula since the early 1970’s.Considering the current status of temperature, precipitation and extreme climate events in South Korea, a long-term outlook suggests marked differences in the South Korean agricultural geography after 2050.Unexpected environmental variables increase year by year and continue to threaten food security in South Korea.The scientific and Technological Prediction Survey suggests that water and food shortages are linked to the intensifying trend of climate warming, and that the current situation of abnormal climates are megatrends, because they are ultimately related to agricultural production.

Young educated farmers could access any WIS because they could read and use most technologies

We ascribed secondary themes to recurring words and linked sub-codes to them.Third, we connected the secondary themes to the information design and delivery criteria according to their definitions.The farmer-to-farmer WIS was also interactive because farmers discussed their observations about the weather.A section of farmers also mentioned the Radio Ada WIS as interactive.At the beginning of the farming season, lead farmers, AEAs, and a host discussed pertinent questions about the seasonal forecast and farmers’ observations.Afterwards farmers were allowed to phone in and ask questions or contribute.We also found that farmers required forecast information with relevance for decision-making.The relevance of information for decision making relates to information that provides relevant agrometeorological indicators, e.g., onset date, agronomic advisories, market information, and so forth.The agrometeorological indicators are suitable for deciding when to plough, sow, apply agrochemicals, and harvest.We found that the content of the private weather forecaster and the farmer-to-farmer WIS had relevant agrometeorological indicators such as onset date, length of the season, and rainfall amount.The agripreneurs, AEAs, and Radio Ada WIS provided bundled agricultural information such as agronomic advice.The involvement of farmers in creating information and incorporating their feedback was a factor that also enabled the usability of the information.This factor also involves the use of farmers’ feedback to address actual needs.Farmers mentioned that the AEAs, the private weather forecaster, and the Radio Ada WIS elicited their opinions.

We identified that information providers’ respect for local values enhanced the usability of WIS.This factor implies that the WIS has local content and reflects farmers’ practices, values,grow bucket and beliefs.This factor is relevant for WIS usability in farming in the Ada East District because it is an area noted for the production of food crops, vegetables, and some fruits for the urban market.The growing demand for specific food crops in the urban market impedes changes in the cultivation of certain crops in response to a seasonal forecast.Therefore, farmers expected information providers to understand their values, beliefs, social-economic characteristics, and practices to tailor to their context.For example, they required WIS to guide them in selecting a variety of tomatoes suitable for a forecast rather than indicate a complete change in crop production.Farmers attached relevance and trust to WIS delivered continuously and provided outlooks on changes between the season or during the day.They expected information on outlook on intra-seasonal changes, but this rarely occurred, albeit that the WIS of the public TV, the private weather forecaster, GMet online, E-agricultural, agripreneurs, and farmer-to-farmer were continuously delivered daily.The timing/schedule delivery of WIS is relevant for farming in the district, as some farmers showed interest in seasonal rainfall onset date and 1–14-days forecast to determine decision-making, e.g., when to apply fertilisers.Another aspect of the time factor was the strict delivery of information at specified times.With the attachment of schedules to the provision of information, farmers would have made certain decisions before it was delivered.Farmers noted Agripreneurs’ WIS for providing daily information where the expected forecast was stated with terms such as “expect rainfall in the morning, afternoon, or evening.” Farmers also appreciated the private weather forecasters’ information because of the provision of outlooks whenever necessary.Farmers explained that only a few received AEAs’ WIS directly through a home visit, mobile phone calls, workshops, and field demonstrations.Often, the invitation on AEAs’ WIS to farmers to attend workshops and field demonstrations was limited to one member per household or to a lead farmer on the assumption that they would share the information; yet, sometimes, it rarely happens.

With such selection criteria, women, young farmers, and other groups of farmers were prevented from accessing relevant WIS.The private weather forecaster’s WIS was accessible directly to only a few farmers because the provider could not respond to their calls at all times.In the case of Agripreneurs’ WIS, farmers had to subscribe to a short code to receive the information, and this required training or some level of literacy; thus, it was used by a few farmers.Lack of ‘free time’ because of engagement in various social-economic activities affected women’s access to WIS, especially regarding scheduled information delivery on the radio or TV.Further, the accessibility of WIS for diverse groups of farmers was also dependent on the availability of radio, mobile phones, television, internet, and electricity.The absence of language barriers also enhanced the usability of certain WIS.According to farmers, most WIS were provided in English rather than in the Dangbe language, which is spoken in the Ada East District.Hence, some farmers, especially illiterate ones, were limited to using certain WIS like the farmer-to-farmer WIS.Of the ten types of WIS found in the district, only half – the AEA, farmer-to-farmer, Radio Ada, private weather forecaster, and the public radio WIS – were delivered in the local language.When WIS was presented at length, farmers were no longer able to remember all the information.The provision of WIS on rainfall occurrence was best recalled, whereas other aspects such as the level of uncertainty, location, and other expected conditions were rarely remembered.This challenge was attributed to the presentation of the format and the content of the information.The Radio Ada WIS was sometimes communicated in drama, and it was deemed relevant for farming because farmers were able to comprehend the message.Agripreneurs’ and online WIS were presented in formats such as: “rain likely, tomorrow, rain likely,” “above normal,” or “near normal.” The public TV WIS was presented with maps and symbols indicating sunlight, rainfall, cloudy conditions, thunderstorms, etc.The use of symbols was meaningful to farmers, especially the symbol for rain or sunlight.Some WIS was also packaged mostly as numbers and text.

The terminologies used in WIS presentations required some explanations to aid its usability.For example, although Agripreneurs’ WIS was delivered in English.A structured text message was delivered in the same format to help farmers understand.The use of multiple media, including voice-based, call centre facilities, mobile phones, radio, and text for WIS delivery, was considered to enhance or obstruct the usability of WIS.We found that farmers had a clear preference for information received through voice mode: face-toface interaction, telephone calls, or interactive voice response with this particular factor.Some farmers emphasised the importance of the public radio and the Radio Ada WIS, as the radio could be operated with a battery, had wide coverage, was portable, and was also a mobile phone component.The district did not promote the use of interactive voice response and call centre facilities attached to Agripreneurs’ WIS.The two-way WIS delivery mode allowed farmers to ask questions and receive feedback.The delivery of two-way information was considered vital because it enabled farmers to verify their observations and discuss differences in the forecasts with information providers.The farmer-to-farmer, the private weather forecaster, and AEAs’ WIS provided two-way information delivery through mobile phone and face-to face interactions.Accessible level and mode of payment indicate farmers’ preference for prepaid or free access WIS.In some instances, the fee for WIS deterred some farmers from sourcing certain WIS.Except for public TV, public radio, Radio Ada, AEAs, and farmer-to-farmer WIS, which provided free information, other types of WIS involved some form of payment.

Farmers who were willing to pay for WIS mentioned detailed, reliable, accurate, and evidence-based conditions for farming.In the above sections, we analyzed the types of WIS, the factors that affect their usability, and how each WIS met a specific factor.These analyses are summarised in Table 3, with a tick indicating how farmers perceived a specific WIS to have met each factor.In this study, we identified ten types of WIS for farming in the Ada East District, Ghana.On average, a farmer used at least two types of WIS.The farmer-to-farmer WIS was often used and other types of WIS,dutch bucket for tomatoes indicating a local way of integrating weather forecasts.This finding was also identified by some other studies, which mentioned that, despite the provision of scientific weather/climate information services through the radio, SMS, TV, agrometeorological bulletins, and so forth, farmers complemented forecast with their local environmental observations.The main reason farmers combined different WIS was the need for reliable and accurate forecasts, which seemed absent in a single WIS.Patt and Gwata and Nyadzi also observed that farmers’ use of seasonal climate forecasts increased when combined and compared with local knowledge.The essence of this finding from the study conducted in the Ada East District is an opportunity to co-produce WIS by integrating farmers’ local knowledge with scientific forecasts to enhance their usability for farming.This idea is increasingly discussed theoretically in the climate information service literature.It is necessary to involve existing preferred WIS sources such as farmers, the private weather forecaster, AEAs, and Radio Ada, from the study district.We identified new factors that affected the usability of WIS in our study district.These include the origin of information, continuity of information provision; schedule delivery of WIS; evidence-based information; format and content of information; graphic presentation, symbols, and terminologies, and accessible level and mode of payment.These findings suggest new factors may be attributed to several issues, including climate change and increasing variability in weather conditions, exposure to different WIS and new ICTs, changes in farming practices, and intensive cultivation of crops.

These factors may play multiple roles in triggering farmers to prefer certain factors inherent in WIS information design and delivery.This finding reiterates that the usability of weather/climate information needs to be mobilised around a particular social-cultural context.Hence, the delivery and uptake of forecast information must be context-specific.The findings on emerging factors indicate the need for information providers to make extra efforts to design and deliver WIS to decrease or even eliminate the WIS usability gap for farming.In our study, we observed trade-offs among factors that affected the WIS usability for farming.For instance, we observed trade-offs between predictive skill and spatial resolution.This is because if information providers attempt to attain location-specific forecasts , weather models tend to lose accuracy and vice versa.Despite advances in forecasting, predictions still carry high degrees of uncertainty depending on various factors such as the variable that is being forecasted, the time of year the forecast is issued, the region, and the length of lead-time.Towards this end, Dilling and Lemos indicated that in a context where decision-makers are made aware of the uncertainty inherent in forecast information, they can accept it as part of using the information in their decision-making.In contrast, there are instances where decision-makers may be risk averse and vulnerable.Hence, they may prefer not to use forecasts.In Burkina Faso, individuals were not interested in relying on forecasts until proven reliable.They expected the forecast to corroborate their observations.Other trade-offs identified in our study involve the factors, high level of interaction, and accessibility for all audiences.It was only the farmer to-farmer and the private weather forecaster’s WIS which met this need of farmers.This finding was also identified by Nyamekye et al.in the Northern region of Ghana, where farmers mentioned their preference for the weather/climate information delivered through the radio since it reaches a large group of audiences in the local language.Yet, it does not grant farmers the opportunity to ask questions or even make contributions due to limited time slots allocated to the radio program.We also observed a trade-off between evidence-based WIS and accessibility for all audiences because it was impossible to include every farmer in the district in practical WIS workshops.This finding also follows other studies.These studies also indicated that farmers have preferences for evidence based information delivered through agricultural extension workshops.Yet, the forecast information is unable to reach variable groups of farmers due to gender norms and expectations, patriarchal values, time poverty, the intersection of seniority, religion, class, and positions within households, that intersects with the criteria for the selection of lead farmers under extension delivery program.Trade-offs concerning factors that affect the usability of weather/ climate forecasts have been identified in the literature.They are inevitable in providing weather/ climate information services.Hence, we recommend that information providers engage farmers through workshops or training programmes to explain how trade-offs are associated with WIS.For example, issues on the provision of location-specific and accurate forecasts need to be discussed with farmers to moderate their expectations.

The territory is usually determined based on the status of the family group or family clan

The implication of the cultural context in its development plays a very important role in human life.It acts as a connector of the rule of law determined by the values or legal culture that is internally lived by the community.Likewise, in the entire cycle of farming, there are values of togetherness and the cooperation implied on it.Therefore, farming system is a system in the Dayak society to maintain their life instead of preserving their cultural custom, tradition, and art.The system is also a way of defending their territory by marking the area where they live by replanting various folk crops.The important point of this research is to spotlight the farming management of Dayak people community in maintaining and preserving natural ecosystem equal with the values of local wisdom from generation to generation.This research used a qualitative approach in which the techniques of data collection used direct observation.The observation process was carried out by seeing and observing directly the events occurred in the Dayak community.During the observation, researcher wrote and collected the data in the form of field notes.Also, the researcher recorded whole events related to the farming process occurred in the indigenous society.In addition to the direct observation process, the data collection process was also carried out by collecting secondary data.The secondary data used in this research were government reports which were reported periodically in public.Other secondary data used in this research were also in the form of field documentations such as photographs and field notes written directly by the researcher on location.Furthermore, all data collected were processed by data coding first.Then,nft hydroponic the data coding process was done by taking into account the available data categorization before the data was interpreted.

The interpretation process used Kroeber and Kluckhohn’s approach in relation to the culture cycle.The final stage was the process of data presentation.Kroeber and Kluckhohn stated that there are seven aspects of human culture which consist of language, knowledge system, social organization, living equipment and technology systems, livelihood and economic systems, religion, and art.Regarding the farming of Dayak people, it can be seen through the whole process, sequence, harvesting yield , and the peak of farming cultivation as the cultural system.Rice is the primary food of the Dayak people, which is the main source of life for generations.Farming is not merely a system of livelihood and economy, but also the form of knowledge system, social organization system, living equipment system, livelihood and economic system, religion, and the occurrence of art substance in it.Related to the culture, we also recognize the existence of stages in the development of the livelihood and economic systems from time to time.According to Alfin Toffler , there are three waves of human livelihood and economy from time to time, those are Nomad, Agriculture, and Industry/Information.To protect various important assets inherited from ancestors who have been accustomed to passing on the social order system and the assets of indigenous peoples from generation to generation, the process is always based on a system influenced by the cultural domain.The interrelation of cultural domains plays an important role in the process, the system and concept that develop in the social order of rural communities or indigenous society groups.We have passed the first stage when humans are no longer moving from one place to another, or nomads.In this first wave, the needs of human life and their social changes are not yet so complex.In such a way, it can be said that the livelihoods and economy of humankind in the nomadic era are still very simple.Then, entering the second wave where livelihoods and economy rely on agriculture humans have begun to settle in a certain area.It is believed that the agricultural system by burning the land has been started since this first wave, around 10,000 years BC.

As stated by Lubis , “Until today in our country there are still two-million people in Sumatra, Kalimantan, Sulawesi and other islands who have made their living with farming technology since around 10, 000 years before Christ”.Meanwhile, the third wave is the stage where humans enter a new civilization named a livelihood and economy based on industry or information technology which is marked by the emergence of factories, companies, information technology, and even now industry 4.0.If we take a look at these waves and stages, there is a phenomenon which is more or less the same where in every wave of the human livelihood and economic system there is a static system , but some is dynamic.The dynamic one is generally related to technology, speed, form and structure of society, social class and societal strata that we know as the social change.The practice of farming only occurs in certain communities whose large territory and are still not much reached by industries, such as in Kalimantan, Sumatra, Sulawesi, Maluku, and Papua.On the other hand, there is a growing awareness that the value of indigenous community’ forests is much higher than the temporary economic value, for example for mining, plantations, or for building housing and offices.”For the customary community,forests and sea as well as other natural resources in their customary territories have high economic values.Not only that, natural resources in their customary territories are the center of social cycle, cultural and spiritual activities.Essentially, this is related to the effort to preserve nature which does not only provide concrete consumption products such as food, but also ecosystem services which become the enabling factor for the sustainable production process”.Observing the sustainability of the environmental ecosystem in the forest areas of the customary society in Kalimantan, we may view from the perspectives of the natural resources where people live and exist for generations.In Masiun’s study, he calculated the economic value of customary forests owned by the indigenous community of Seberuang Riam Batu located in Tempunak District, Sintang Regency, West Kalimantan Province.Besides practicing subsistence economy, the people in Riam Batu have also followed an open economy system.

However, the people do not want to sell their customary forest for various momentary benefits because they realize that the value of forest is much higher than mining, plantation, housing, and others.The Dayak people also implement the loop back farming system that returns the plants back to their original cycle based on the natural law within 15 years.That all laws are created through some kind of social process; a conventional norm is the outcome of something resembling a deliberative convergence of behavior and attitude on the norm, while other social norms are manufactured through social processes like those set forth by a rule of recognition and imposed on non-members of the group.This only likely happens since the customary community manages their forests wisely and place their entire process and livelihood system as a sustainable system.Thus, the farming systems of the Dayak people are well-integrated with nature and its environment.The way of being and the way of life of Dayak people cannot be separated from the nature and the environment where they live, reside and exist.In the past, from various literatures and research conducted by foreign authors, many things have not been revealed to the surface related to the wisdom, insight, and values in the farming system of the Dayak people.Morrison , David Jenkins and Guy Sacerdoti , for instance, tend to view in general the cultivation of the Dayak people in Borneo merely to produce rice.Morrison acknowledges the importance of farming for the Dayaks while pointing out that rice is the staff of life for the people.Rice is so important to the Dayaks in Borneo, so that Morrison writes the title “Padi – The Staff of Life”.It describes how the Dayak people obtain rice, starting from clearing the land to getting feast together after harvesting.Meanwhile, David Jenkins and Guy Sacerdoti calculated that each family head of Dayak people who cultivates one hectare of land will yield roughly 900 kg of rice.This is, according to the Western’s perspective, considered unequal between the woods cut down and burned becoming charcoal, and the results gained from it.However, if we observe carefully that the farming of the Dayak people is not solely and only rice as a target to be yielded.Farming for the Dayaks is not just a rice cultivation.A lot of wisdom, values, customs, traditions, culture, arts, even economic and educational values are enclosed behind it.Researchers and authors from “inside”, known as the intellectuals of the Dayak people, have tried to describe the hidden dimensions and tacit knowledge that outside researchers have never seen, written,nft system and even published them.In such a way, what ‘insiders’ have studied and written seems to be considered correctly because there are no other research results and publications arguing or adding other elements of farming rather than rice as its novelty.

Yansen notes that the environment, forest, and farming cannot be separated from the activities and the life of customary or traditional communities.“For hundreds of years, the ancestors of the Dayak people have a forest area as their territory.They continue to develop and to build evolutionarily cultural and social characters in line with their interactions with their nature and environment.The environment and nature shape various social models and customary territorial boundaries of the Dayak people, such as hunting and farming activities.These two activities can determine and legitimize the right of their customary territorial.This cultural and customary model has been institutionalized, accepted, maintained, and conserved from generation to generation by individuals, customary communities, or customary institutions even by village bodies.Thus, it is implicitly explained that there is a social function of the forest.On the other hand, throughout the farming process there is a dimension or activity that includes or involves many people during the process.According to Kroeber and Kluckhohn the cycles or stages of farming of the Dayak people integrate the management of ecosystem and the traditional culture of Dayak community.In general, the stages of the farming found in this study are: inspecting the land, determining the land area, cleaning or purifying farming tools, slashing, cutting the trees, burning the land, planting, weeding, harvesting, and performing thanksgiving ceremony.Those ten stages of farming are applicable everywhere among the Dayaks and those are mandatory to get through.However, there are some practices or other activities in some places added by the clans or customary communities in the process.It is quite interesting to observe as a social exchange process where the stage becoming the crown or the peak of the farming system and cycle is the thanksgiving ceremony or Begawai.It is not only in a village that people festive the ceremony, but also it involves the nearby villages, or even likely villagers from other areas who have an interest or still have family relationship with the host of the event.The farming or cultivation is carried out once in a year and simultaneously in the season which is considered to be the right time to start the opening of farming activities.When farming is done in a group and together, pests and crop diseases will be avoidable.Or if pests and diseases attack crops in fields other than rice, their attacks are still within tolerance limits since there are many fields to be affected.Therefore, pests and diseases can spread over to the large areas so that they do not affect just one field which can cause mass destruction.In certain Dayak tribes, for example the Dayak Lundayeh in Krayan of North Kalimantan, there is a well-known tool to determine the right season to start the cultivation named “Batu Tabau”.It is a kind of traditional tool to see the direction of the sun rotation.Meanwhile, among the Dayaks in Kapuas Hulu of West Kalimantan they start cultivating on their fields by observing the astrological sign.They know the “three-star sign” which give them a sign to slash, to burn, to plant and so on.Among the Dayak people of West Kalimantan, Central Kalimantan, South Kalimantan, East Kalimantan and North Kalimantan there are similarities in determining to begin the farming cycle.That is, the starting point of the period is to inspect the land starting in May and ending by harvesting in March or April by the next coming year.

A critical dimension of the afforestation agenda is finding the space – land – to plant trees

Meanwhile, qualitative analysis of farmers revealed that farmers strategic approach to cattle purchasing of fitting the system meant that behavioural interventions were of limited consequence: the fact that they chose cattle with low bTB risks was coincidental. It is possible that our results reflect the way our participants were drawn primarily from the dairy sector rather than beef or calf-rearing sectors. Framing cattle purchasing in terms of short-term needs rather than establishing longer-term supply chains may also have elicited less frequent mentions of trust, reciprocity and ‘good farming’. These alternative scenario framings may have enhanced the significance of our ‘good farming rating’ but was nonetheless revealed in our qualitative analysis of our general discussions with farmers during the game. Our methodological approach therefore raises questions for how other research on behavioural insights within agricultural policy might be tested. In fact, a recent review of the agricultural behaviour change literature found relatively few studies of behavioural interventions, most of which relied on education rather than behavioural insights. Moreover, whilst some innovative methodologies were found , others relied on experimental methods that provide little insight into the differences between control and intervention groups . Alternatively, multiple interventions are applied to multiple contexts making delineating their effects methodologically challenging . Whilst calls have been made for greater methodological quality of behavioural intervention studies in agriculture ,fodder system there is a risk that reliance on experimental methods overlooks the many and varied contexts of agricultural activities such as cattle purchasing.

A key contribution of our research is therefore to respond to these concerns and provide complimentary methods to address these challenges. Secondly, whilst ‘good farming’ has been explored conceptually in relation to bio-security, this study responds to Burton and Paragahawewa’s challenge of developing good farming measures for a specific bio-security practice. Although such measures are not without their problems, in relation to cattle purchasing we have shown that good farming measures can play a role in shaping farmers’ cattle purchasing decisions, forming an important part of farmers’ purchasing ‘radar’ used to match cattle to their system. The process of matching purchases to farming systems observed in our study reflects what Burton et al. describe as an attempt to build a ‘cowshed culture’ – a ‘self-reinforcing culture in which animals, humans and the physical structure all contribute to the development of farm specific ways of doing and being’. Designing and reinforcing a system that promotes ‘positive interactions’ between the human and non-human constitutive elements is central to a farm’s success. The purchasing strategy of ‘fitting the system’ therefore reflects an attempt to maintain such positive interactions. Indeed, as Hidano et al. suggest, ‘livestock purchasing practices seem to be shaped in the process of establishing cowshed culture, rather than farmers choosing “best” cows for their farms after considering a whole range of animal characteristics’. In describing how farmers seek to ‘fit the system’ through their cattle purchases, we have also highlighted the trade-offs that farmers must make. The absence of the perfect animal means that fitting the system requires ‘skilled craftwork’ to identify the best animals to fit the system whilst also recognising the limits to this work . These skills are reflective of the kinds of judgments made about stock when purchasing them such as their likely productivity based on their conformation, appearance and behaviour.

However, estimations of good farming are also relevant here. On the one hand, good farming metrics may play a role in helping farmers to decide which stock to buy by providing reassurance that the vendor is not ‘dodgy’ but an ‘honest dealer’ . On the other hand, whilst farmers reacted positively and more enthusiastically to our good farmer rating than traditional metrics of disease control, it was also simplistic and unable to capture all the dimensions of good farming. This may explain why personal contacts and reliance on long-standing trusted trading relationships are preferred by many farmers. Nevertheless, further development and testing of other ways of expressing good farming for bio-security should take place. For example, a pictorial farm portrait may help convey good farming status better than a simple metric. Such an approach, whilst ostensibly less objective, may allow farmers to build their own assessments and be comfortable with their limitations because they reflect their own cultural values. Indeed, as recent bio-security research has suggested, recognising and living with the limits to bio-security boundaries is what makes them work . Finally, In showing how this fitting process works for cattle purchasing, we have also demonstrated how farmers’ decisions reflect a hierarchy of second-order strategies in which first-hand experience of the animals and vendor takes priority over representations of good farming in satisfaction ratings or disease information but which is more important than financial incentives and aversion to financial loss. However, it is also the case that these strategies and the relative importance of different information will vary between different segments of the farming population and according to different disease contexts. However, it may also be the case that the social context of disease management may also play an important role in determining the use of information available at the point of sale but which is not factored into narrowly defined approaches to behavioural ‘nudging’.

For Michie and West , this suggests that a range of behavioural interventions that may include both regulatory and persuasive techniques is required in order to be developed addressing different behavioural mechanisms is required . For others, the main problem with attempts to alter behaviour through the provision of information is that they fail to secure ‘norm internalisation’ , providing only short-term solutions. This is particularly the case when they relate to collective action to manage risks that affect everyone such as disease control . The answer to this problem may lie in moving away from ‘neuroliberal’ solutions that ‘infantalise’ people as unable to deal with complexity towards approaches that seek to engage them in co-producing their futures rather than by-passing their irrationality . As Drury et al. show, when people view an existential threat in terms of the way it affects a community, they mobilise and coordinate collective solutions and ensure the community as a whole benefit rather than just the most able. The implications of these critiques for cattle purchasing is that behavioural change interventions may be most effective when they are designed and produced by the communities affected by them . Indeed, our research revealed that farmers’ purchases were already oriented towards disease management priorities when they reflected the priorities within private forms of regulation that had been developed within and by the farming industry rather than priorities that had been imposed by external regulators. This suggests that rather than focus on changing individual behaviour, changes to the organisation of regulation in which the private sector creates its own systems of bTB control and incentivized through contractual agreements with farmers may prove a more effective strategy of managing the movement of cattle. Advocacy for tree planting and ‘woodland creation’ in response to climate change has reached fever pitch in the UK and beyond – in many ways becoming the raison d’ˆetre of contemporary forest policy. The Intergovernmental Panel on Climate Change published their special report on ‘Climate Change and Land’ in August 2019 , which stressed the importance of afforestation for its potential to deliver high impact on climate change mitigation. Echoing this at the national level, the UK Climate Change Committee ‘Net Zero’ report was published in May 2019, recommending planting 30,000 to 50,000 ha of trees annually to meet commitments made under the Paris Agreement.

These reports gained significant attention in national media highlighting the need for afforestation and emphasising the need for changing diets and moves away from livestock agriculture . Numerous other articles have appeared across national, regional, and local popular press related to tree planting for climate change mitigation or reporting contemporary ecological and forest sciences in this subject area . In one particularly high-profile instance, July 2019 saw several media outlets reporting the publication of ‘The global tree restoration potential’, a paper by a group of environmental scientists led by JeanFrancois Bastin, in the journal Science .1 National media headlines associated with this publication highlighted the ‘mind blowing potential’ of forest restoration to remove green-house gasses from the atmosphere . Related posts on social news websites became among the year’s most ‘upvoted’ posts within days . This narrative, drawing together a verifiable climate change mitigation technique with the widely popular act of tree planting, has proved extremely popular amongst political leaders. During the UK’s 2019 General Election, for example, political parties sought to outdo each other with manifesto commitments to ever larger tree planting promises. Tree planting targets themselves have had impactful media coverage , and form a significant element of governmental policy .It is widely felt that much of the proposed afforestation across the UK will need to be undertaken on land currently used for agricultural production. ‘Marginal’ upland areas typically used for extensive livestock production are often highlighted as key opportunity spaces. As a climate change mitigation strategy,fodder system for sale large-scale tree planting is often deemed to compete for land with agricultural production and is frequently considered to run counter to the cultural attachment of farmers and farming to the land . Land availability and the related socio-cultural context, attitudes, and goals of the farming community are therefore central constraints here. There has been much analysis in this arena with explanations of poor engagement with woodland creation and management amongst the farming sector centring on the roles of economics, knowledge, cultural norms and practices, governance design and advisory services . These constraints are reflected in the very low rates of afforestation in the UK in recent years . In western societies the media wields considerable power in disseminating ideas and defining what is considered normal, or ‘popular common sense’ in relation to specific issues. Mass media actors and society interact in complex dialogues, co-producing public understanding and setting political agendas, including in relation to sustainability and land management challenges .

Within this, diverse media outlets interact in different ways with their target audiences. Sectoral, local, and other membership-oriented media have a distinct role in reflecting, defining, and evolving or maintaining particular sets of understandings and values within relevant social groups . Whilst the media is not generally the immediate or direct motivation for farm-level ‘decision making’ , coverage of issues affecting the agricultural sector shapes farmer behaviour and decisions by representing issues in particular ways, expressing certain values, including or excluding topics, and outlining risks and opportunities for change . Thus, the farming media actively ‘frames’ agricultural practice by purposively including, emphasising, and promoting particular aspects of farming business and life, whilst omitting others. Given the context of an increasingly frantic drive for afforestation and the importance of attitudes towards trees amongst the farming community, in this paper we examine how tree planting, or ‘woodland creation’, is featured within and represented by the UK’s farming print media. Whilst digital media and sources of information are increasingly prominent within the agricultural sector, print media sources – especially dedicated ‘trade’ outlets – remain important sources and communication channels . Hence, the framing and communication of woodland planting and its relation to climate change mitigation within these outlets is highly likely to both reflect and shape farmer culture, preferences, and goals in relation to this issue. A number of agricultural and other land management debates have been examined through the ‘lens’ of print media analysis – including with a focus on sector-specific press. Rust et al. , for example, analysed the framing of sustainable agricultural practices in the UK farming press to understand if this influenced farmers to adopt these practices. This analysis found sustainable farming practices were most frequently framed from an economic or agronomic perspective which farmers identified as common drivers of adoption. However, the study also highlighted the limited trust placed in the farming press by some farmers, who believed that, due to the need for continued advertising revenues, reporting tended to favour agribusiness.