Resilience refers to the capacity of social-ecological systems to fulfil their function in changing conditions, thus withstanding disturbances and being able to adapt and transform while delivering on their main goal . Although resilience is sometimes portrayed as stability, resilient systems can—and should be able to—transform. The strategies through which a social-ecological system may retain its resilience can be characterised in terms of persistence or robustness, adaptability, and transformability . Robustness refers to the capacity of the system “to withstand stresses and anticipated shocks” . Adaptability, in turn, entails “the capacity of actors in a system to influence resilience” by, for example, changing “the composition of inputs, production, marketing and risk management in response to shocks and stresses but without changing the structures and feedback mechanisms of the farming system” . Lastly, transformability is about “the capacity to create a fundamentally new system when ecological, economic, or social structures make the existing system untenable” . Such changes can imply a changing function of the farming system . A farm system may employ different resilience strategies over time. The food system and the embedded farm systems are in a flux of constant interaction: the dynamics on both levels condition each other. The employed resilience strategy depends on the transformative capacities of the farm and the farmer—what they can do with the resources they have. This makes resilience a question of agency and power. In a situation where the regime is strongly locked-in, farmers’ choice space becomes substantially limited .
The pressures are manifest in how farmers are acting mostly as price-takers and carry the responsibility for mitigating environmental impacts in the food system . However,flower pot not all farmers are similarly affected by transition processes, which calls for analyses of the transformation pathways accessible to farms. Agency and power are longstanding areas of research in social sciences. Agency can be seen as the actors’ capacity to act, and it constitutes power, intentionality, freedom of choice and reflexivity . Power, in turn, is understood here as “the capacity of actors to mobilise resources and institutions to achieve a goal” . When resilience is understood as the capacity of a system to achieve its goal, the notion of power in achieving that goal is central to the analysis of resilience. Resilience requires adaptive capacity, which refers to the potential of system agents to fulfil their goals, act independently, and exert their own agency . As such, the concept of adaptive capacity is practically identical to the concept of social power. Analyses of resilience and adaptive capacity at the level of farm systems require identifying the kinds of goals farmers hold regarding food production, the resources available, as well as the capacities to utilise them to achieve those goals . Thus, even though the concept of resilience has sometimes been used without being attentive to the societal context, questions of regime reproduction, or social power , it holds potential in analysing questions of agency, power, and social justice related to systemic transformations As systems may employ very different strategies to retain their resilience, it is presumed that system actors also employ different capacities in accordance with their resilience strategy. Avelino argues that transformative capacities are different from capacities that reproduce the existing structures, as in the case of persistent or adaptive versus transformative types of resilience.
According to Patterson et al. , “Transformative adaptation approaches take as a starting point that power relations condition the options available to marginal and vulnerable groups to shape their own desirable futures, thus requiring keen attention to issues of social difference, power, and knowledge.” Tribaldos and Kortetm¨ aki see capacity development as a criterion for a just transition in the sense of whether food system actors can respond to transition pressures. Thus, resilience capacities depend on what people can do and be with those resources and goods they possess or have access to . How farmers as system actors employ their capacities is a function of their internal goals and the external conditions defined by the food system . When the distributive effects of external conditions fall unequally upon the food system actors, restorative justice can reveal new perspectives on mitigating these effects. Restorative justice approach is traditionally understood as a non-adversarial response to harm and conflict that derives from violations of law, rules, ethics, or a general sense of moral obligation . The concept originates from criminal justice studies seeking to repair the damage and restore the dignity and well-being of all those involved in causing harm . However, restorative justice has increasingly been acknowledged in the field of sustainability, particularly from the perspective of energy transition, nature conservation, food transition and human rights . The common characterisations of restorative justice emphasise face-to-face dialogue between different parties configured as offenders or perpetrators of harm and the subjects-of-harm . The latter is often conceptualised as a “victim”, a condition under which agency and relationship with offenders are to be transformed. The process of restorative justice involves a reactive mechanism to address the damage already done. In other words, the process seeks to restore justice within the structures of the existing system. Accordingly, the individual is expected to undergo a transformation process while the surrounding system does not change.
Recent proactive approaches to restorative justice have emphasised more anticipatory elements of restorative justice. This means involving a range of actors and adopting a forward-looking approach that is both preventive and strategic . However, to be genuinely proactive and transformative, justice cannot be achieved by restoring the status quo ex ante . We further argue that the main challenge of restorative justice during systemic changes is that the transformation is not only about individuals but the system itself. Thus, individuals cannot be easily ‘restored’ with the logic of a system on the move. In systemic transitions, this would mean that those at risk of becoming ‘transition victims’ should also have the opportunity not to become ones. However, the application of the restorative approach to sustainability transition is not unproblematic, as the actors who fall victim to the transition processes have at the same time contributed to the problems that call for a transition in the first place. To what extent this contribution can be credited to the deliberate choices of the actors or just to them operating by the rules of the game remains debated. However, the current financial position of farmers suggests that the system itself is the most crucial factor in delimiting their choice space. The just food transition poses a fundamental challenge to restorative justice; the food system itself is enduring a major transformation which is also expected from the actors within the system. We argue that a genuinely transformative and proactive approach to restorative justice should aim at resilience and capacity building not only in terms of the existing system, but also in terms of the systemic transformation. We now move on to examine farmers’ transformative capacities and then discuss our findings from the perspective of restorative justice. The research area in Eastern Finland comprises three provinces: North and South Savo and North Karelia . The area is characterised by a sparse settlement structure and rather unfavourable socio-economic development patterns. The area adds up to 18% of the total area in Finland and 10% of the total population, with 557,000 inhabitants.
On average, the farms in Eastern Finland are smaller than the national average, and the fields tend to be fragmented into small plots. The share of utilised agricultural area in Eastern Finland is 5% of the total area in comparison with the Finnish average of 7.4% . The climatic conditions and soil properties are particularly suitable for grass production, and consequently, the role of cattle production is pronounced with 33% of all farms in Eastern Finland being cattle farms in comparison with the Finnish average of 20% . A significant share of the yields produced on crop farms are used for feed on cattle farms in the area . Regarding farm sales,berry pots in Eastern Finland 68% comprises animal products in comparison with the 58% average of mainland Finland . This study is based on survey data collected during the mid-term evaluation of the 2014–2020 Rural Development Program of Eastern Finland . The programme addresses a wide range of social, economic, and environmental issues of farms and rural areas by channelling the funds of the second pillar of the EU’s Common Agricultural Policy for farmers, rural firms, and non-profit organisations. A survey request was sent to all farmers in Eastern Finland who had received agricultural support from the programme and who had registered an email address in the IACS farm register . All active farmers in Eastern Finland with at least 5 hectares of arable land are entitled to LFA support, and in Finland, the support encompasses nearly all agricultural land . As a result, 577 responses were retrieved, with a response rate of 9% despite several requests to fill out the questionnaire. The low response rate was partly due to unfavourable timing of the survey at the beginning of spring but is in line with many recent farmer surveys conducted in Finland. The survey addressed issues related to the farm and its production activities, the farmer and the farming family, farming as a livelihood, environmental aspects related to farm management, and the main types of subsidies received and their perceived effectiveness. The basic characteristics of the surveyed farms are presented in Appendix 1 in comparison with all farms in Eastern Finland and all farms in mainland Finland. The survey respondents farmed slightly larger farms than farmers in the area on average but were broadly representative of farmers in the area.
Most of the survey respondents were cattle farmers , followed by other crops and cereal production . Garden crops, especially strawberry and currant, are typical crops in eastern Finland and had a share of 9% in the dataset. We operationalised the concept of resilience according to the three dimensions of resilience: persistence, adaptability, and transformability. In addition, we also identified a non-resilient group. The operationalisation strategy was based on three variables: 1) the future strategic orientation stated by the farmer , 2) an additional open question related to the farmer’s strategic orientation asking the respondent to specify his or her plans, and 3) freely expressed goals for farming . Out of the 577 responses, 575 were analysable in terms of resilience; thus, the final dataset consisted of 575 responses. Coding farm resilience was an iterative process between the three variables. Table 1 presents the coding principles for each resilience group. In short, a farm was coded as persistent when the farmer aimed at business-as-usual and did not indicate development intentions. Those farms that aimed at developing the farm within the existing operations were coded as adaptable. Transformable farms indicated a deliberate search for a new direction for the farm business by diversifying the farm operations or doing something new in comparison with the existing operations. Non-resilient farms aimed to quit farming by retirement or moving into another business; they did not have successors and their intention was to lease or afforest the fields. The resulting four farm groups with diverging resilience orientations were profiled in terms of variables concerning the farm and its production activities , the farmer and the farming family , farming as a livelihood , environmental aspects related to farm management , and the main types of subsidies received and their perceived effectiveness , adoption of agri-environmental contracts, investment support, organic farming, extension support. These variables reflect the availability of resources, as well as how farmers make use of them and how they relate to environmental management at the farm level, reflecting the mobilisation of environmental values and motivations. A complete list of the variables included in the analysis is given in Appendix 2. To determine whether the differences between the resilience groups were statistically significant, ANOVA tests were performed for continuous variables for the comparison of means, and contingency tests were performed for categorical and dummy variables for comparison of the distributions.