There were relatively few very large farms and many very small farms

The deviation is almost zero near Ŵ point and begin to have large value at the momentum at which the Berry curvature and the OAM are also about to increase from almost zero value. This provides experimental evidence that the deviation from the median value of INCDs in geometry-A and -B can be interpreted as the Berry curvature contribution. Although the Berry curvature and the OAM continually increase as they approach the K point, the deviation from the median value from CD-ARPES data seems to be almost constant away from the Ŵ point.Let us briefly touch upon the possible incident photon energy dependence in CD-ARPES or the final state effect. This is because one can wonder if the CD-ARPES pattern we obtained is seen only with the particular photon energy and a different photon energy may give us a different result. In such case, changing the photon energy will also change the CD-ARPES pattern and the CD-ARPES may not be related to OAM or the local Berry curvature. We would like to point out that incident photon energy dependent CD-ARPES has been performed on the same material. The results showed that CD-ARPES features related to the local Berry curvature are the same regardless of the photon energy. Even though it was for a different plane of incidence compared to the current one, the photon energy independence of the pattern provides a good reason to believe that the CD-ARPES pattern is proportional to OAM or the local Berry curvature. In some the other systems such as Bi2Te3, PtCoO2 and Au, CD-ARPES results show a sign change. Yet, growing bags those results still show that node lines in CD-ARPES map remain the same except a special resonant channel is involved.

In addition, characteristic patterns of CD-ARPES map cannot be explained without consideration of OAM. Therefore, we argue that the interpretation of the CD-ARPES intensity in this work should be robust although the data was taken only with a single photon energy. CD-ARPES data on 2H-WSe2were taken with the crystal mirror plane set as the experimental mirror plane. Within the experimental constraint, there are two possible experimental geometries. We found that CD-ARPES data for the two geometries are almost opposite to each other near the BZ corners, and nearly the same near the Ŵ point. The experimental observations are well explained by accounting for the Berry curvature contribution to CD-ARPES. The Berry curvature contribution to the INCDs can be quantitatively extracted through an analysis that compares INCDs for the two geometries. Our results provide experimental evidence that the deviation from the median value between the two experimental geometries can be interpreted as the Berry curvature or the OAM. Our work may be applicable to observations of the Berry curvature or the OAM in topological materials, such as Weyl semimetals and Berry curvature dipole materials.Horticultural crops provide 60 percent of total farm revenue in California agriculture, and California provides 37 percent of the horticultural crop value in the United States. Clearly, these industries comprise an important part of the agricultural economy. This study provides a detailed statistical profile of California’s horticultural crop industries at the farm level, based on a survey of specialty crop growers that was conducted during the spring of 2002. The Risk Management Agency of the United States Department of Agriculture supported the research, and the California Office of the National Agricultural Statistics Service helped conduct the survey. Specialty crops, also referred to as horticultural crops, include tree and vine crops, vegetables, and ornamental crops.

The statistical profile of California’s horticultural farm industries presented here is the most comprehensive ever undertaken for these industries, drawing on survey data collected from approximately one-third of all horticultural crop producers in the state. Specialty crops are diverse. They differ in their product characteristics, production processes, and market environments. Such heterogeneity extends to risk characteristics of the crops and to the ways farmers cope with various risks. As a preliminary step to development of effective risk management tools, it is important to better understand factors that affect these risks. This report is intended to provide such information to help us understand specialty crop industries, the sources of risk, and behavioral risk responses in these industries. The following summary of results is organized by topic.About 86 percent of the farms surveyed produced primarily orchard and vine crops, 5 percent produced vegetable crops, and 9 percent produced ornamental crops. About 25 percent of the farms were located in coastal areas, 13 percent in the Sacramento Valley, and 47 percent in the San Joaquin Valley. The remaining 15 percent were in the northern mountain areas, the Sierra Nevada, the Southern coast, and the deserts. Average farm size was 203 acres, but the median farm comprised only 34 acres. The average number of acres per farm varied substantially among the three crop categories: fruits/nuts, vegetables, and ornamental crops. The average land holding by vegetable growers, 1,106 acres, far exceeded the average of 157 acres for fruits/nuts and 200 acres for ornamental crops. These land figures include land planted to secondary crops . When we examined land planted only in primary crops, our data showed that fruit/nut and vegetable farmers held, on average, about 50 percent of their land in primary crops . However, land for ornamental crops, on average, accounted for only 10 percent of the average 200 acres per farm.

Crop diversification has long been recognized as an important risk management tool. Our data showed that crop diversification was much less common for orchard farms than for vegetable farms. About 70 percent of fruit/nut farmers were single-crop growers as opposed to 26 percent for vegetable farms. The scope of diversification also differed. Fruit/nut farmers predominantly diversified their crops with other varieties of fruits and nuts; only 20 percent of them used crops other than fruits and nuts for diversification. Vegetable farmers, on the other hand, frequently used other crops for diversification; only one-third of the vegetable farms were diversified among only vegetable crops. Our survey also indicated that primary crop acreage increases with crop diversification for both fruit/ nut and vegetable crops. Farms growing five or more vegetables were, on average, four times larger in vegetable acreage than farms growing a single vegetable crop. In California, 6 percent of specialty crop farmers had some organic or transitional-organic land. In terms of crop category, these farms represented 6 percent of orchard farms, 14 percent of vegetable farms, and 4 percent of ornamental crop farms. Our data showed that these farms also engaged in conventional farming and that they devoted, on average, about one-third of their primary crop lands to organic farming. Judging from acreage assigned to primary crops, nursery grow bag the farms were about average in acreage for fruit/nut farms but much smaller than average conventional vegetable farms.Marketing is an important component of risk management. Marketing channels vary by product use . Processing crops are delivered in bulk directly to processing plants, whereas fresh-use crops are sent to operations to be sorted, packaged, cooled , and distributed through marketing channels. California producers were highly specialized in terms of use. Most fruit/nut farms produced mainly for processing use and most vegetable farms produced mainly for fresh use . Only 7 percent of specialty crop farmers supplied both processing and fresh market outlets. In processed-use markets, contracts played a major role with contracts with a predetermined price being the most prevalent form. In fresh-use markets, grower/shippers, which combine the packing/shipping business with field production under one ownership, provide a form of vertically integrated business. Our survey showed that grower/shippers accounted for 13 percent of vegetable farmers and 3 percent of orchard farmers and that they mainly supply mass merchandisers . The other fresh-market growers tended to use diverse marketing channels, including selling directly to consumers, marketing through cooperatives and independent shippers, and selling directly to commercial buyers. For fresh vegetable markets, “directly to consumers” was the most commonly used outlet , not by volume of production but by number of farms using this marketing channel.We investigated year-to-year yield variations using yield information for the preceding five years. Taking the average of the five annual yields as an individual’s normal yield, we calculated the percent deviation from the normal yield and then arrived at sample mean deviations for sample categories. Our data indicated that annual yield deviated, on average, 15 percent for fruits/nuts and 8 percent for vegetables over the previous five years. For price and profit fluctuations, we elicited information on the range of the highest fluctuation experienced over the same five year period . For both price and profit, the median of the accumulated distribution fell in the 25–49 percent range for fruits/nuts and the 10–24 percent range for vegetables, indicating that prices as well as profits tend to fluctuate less for vegetables than for fruits/nuts. In response to a list of options as the main cause for the lowest profit, “poor yield,” “low market price due to high domestic production,” and “low market price due to imports” were the three most often cited causes for all crops except ornamentals. They accounted for 70 percent of the responses for fruit/nut and vegetable farmers. For fruit/nut crops, poor yield was the most cited reason for the lowest profit , but for vegetables, low market price due to high production was cited most , followed by low market price due to imports .

This underscores the relative importance of production risks for orchard crops and of market risks for vegetable crops.Two sources of risk, adverse temperature and output price fluctuation, were listed as most important; input price fluctuation, pests, and disease were considered to be moderately important. Crop insurance was a preferred risk management tool for orchard and vineyard farmers, and crop diversification was preferred by vegetable and ornamental crop growers. Diversified marketing was reported to be the second most preferred tool for all three crop categories. We also surveyed farmers about the availability of risk management tools. As expected, their preferences were closely linked to availability. The most available tools were crop insurance for orchard crops and crop diversification for vegetables and ornamental crops . Orchard and vineyard farmers reported relatively limited availability of other risk management tools.About 53 percent of fruit/nut farmers, 31 percent of vegetable farmers, and 13 percent of ornamental crop farmers said they had purchased crop insurance in the preceding five years and most of those farmers had purchased it for all five years Single-peril insurance is mostly offered by private firms, most commonly for damage from frost, rain, and hail. This insurance was purchased by about 20 percent of fruit/nut farmers and about 10 percent of vegetable farmers. Many farmers suggested that a higher yield guarantee would improve crop insurance. Further, most farmers strongly suggested the need for crop insurance that compensates in value terms, but they expressed no strong preference among compensations based on gross sales, profits, or production costs.Financial variables examined were off-farm incomes, gross sales, debts, and assets. Clearly, the portion of household income risk attributable to variation in farm income decreased as the share of off-farm income rose. For our sample, an average of 63 percent of income came from off-farm sources. A sizable segment of farmers, as many as 25 percent, derived less than 1 percent of their income from farming in the year sampled. This is consistent with the observation that many of the farms were quite small, many farms operated at a loss in any given year, and there was a relatively large number of so-called “hobby” farms in California. Gross agricultural sales averaged about $0.4 million per farm for the entire sample. Vegetable farms averaged $1.1 million in sales, followed by ornamental crop farms with $0.8 million, and orchard farms with $0.3 million. About 6 percent of fruit/nut farms had sales of more than $1 million, compared to 29 percent for vegetable farms and 13 percent for ornamental farms. Agricultural sales were negatively correlated with off farm income share and positively correlated with acreage. Revenue per acre decreased as acreage increased. Given that specialty crops vary widely in unit value and in value per acre, this indicated that farms with fewer acres tended to grow crops with a high value per acre.