While C0 wines in this study demonstrated lower alcohol content than shaded wines, previous literature corroborates cluster temperature reduction by partial solar radiation exclusion as an effective method to lessen sugar content in the grape berry and thus reduce alcohol content of wines . The effect of partial solar radiation exclusion in semi-arid climates on berry pH and TA is mixed. Previous work demonstrates partial solar radiation exclusion to reduce pH and increase TA in grape berries by reducing the thermal degradation of organic acids . However, in the present study, berry pH and TA at harvest were unaffected in either year by shade films . Nonetheless, there were apparent effects on wine pH and TA that were vintage dependent. In the present study, D3 wines had the lowest pH and highest TA, while C0 wines did not differ from the shade films D1, D4 or D5 in pH or TA in 2020. Differences observed in pH between the wines ultimately affect the colorimetric properties of these wines. In 2021, D4 and D5 wines showed the highest pH values. It is understood that the pH of the wines can shift the anthocyanin equilibrium in wine solution between the flavylium and quinoidal base forms . In the present study, D4 wines had the highest pH and the highest CI. In many cases, when pH rises, CI will decline as anthocyanin equilibrium shifts away from the flavylium form towards the colorless quinoidal forms . However, large plastic pots this was not the case in the present study. Rather, improved color intensity at elevated wine pH could be attributed to co-pigmentation in the wine matrix.
Co-pigmentation refers to non-covalent interactions between anthocyanins and cofactors such as flavonols, flavan-3-ols and proanthocyaninidins, that results in greater absorbance of the wine than color what would be indicated by anthocyanin content and pH conditions . Copigmentation in young wines was shown to increase color intensity in young red wines . In the hotter 2020 vintage, the total flavonols in grape berries were increased in D4 fruit compared to other treatments . This increased berry flavonol content was transmissible during winemaking, as D4 wines also showed the highest total flavonols with similar concentrations as C0 wines in 2020. TPI was also enhanced in D4 wines. As such, this increased the abundance of cofactors in the wine matrix. Thus, improved color intensity documented in D4 wines in both vintages could be due to the enhancement of absorbance from increased flavonol content by reducing thermal degradation in the vineyard . In the cooler 2021 growing season, shade films produced wines with less flavonols than C0, but greater anthocyanin content, thus leading to improved color intensity in D4 wines. The increase of phenolic cofactors in D4 wines not only enhanced color and hue, but also led to a higher percentage of polymeric anthocyanins when compared to other shade treatments. Phenolic and polyphenolic compounds from grape skins and seeds can form polymeric pigments in wine with anthocyanins. These polymeric anthocyanins are more stable than monomeric anthocyanins and help to stabilize wine color. This occurs as the proportion of monomeric anthocyanins decreases, leaving color to be maintained by polymeric anthocyanins . Across both vintages, the percentage of polymeric anthocyanins was maximized in D4 wines, indicating that these wines may have greater aging potential than wines from C0 and other shading treatments.In the present study, partial solar radiation exclusion modified the composition of anthocyanins in wine. Partial solar radiation exclusion resulted in increased anthocyanin glycosides in wine from shade film treatments except for D4 wines in 2020.
In 2021, D4 consistently showed the lowest cluster temperatures post-veraison and as a result, demonstrated the highest concentration of glucosides in resultant wines. Excessive berry temperatures post-veraison in both vintages led to C0 fruit with reduced total anthocyanin content at harvest and this carried over into resultant wines . The reduction of near-infrared radiation by at least 15% produced a cluster temperature conducive to anthocyanin accumulation, as these compounds are susceptible to thermal degradation above 35°C . When comparing total anthocyanin and flavonol concentrations between 2020 and 2021, regardless of treatment, 2020 wines had anthocyanin and flavonol concentrations six to seven times less than those in 2021 wines. As flavonoids are susceptible to thermal degradation, this drastic difference in total flavonoid concentrations may be attributed to hotter vintage air temperatures in 2020 compared to 2021. Previous works show berry sunlight exposure to alter the composition of anthocyanins, such as the proportion of acetylated and coumarylated forms . Modulation of acylated, methylated, and hydroxylated forms of anthocyanins result from the synergistic effect of solar radiation exposure and the coupled increases in berry temperature . Generally, high berry temperatures resulting from increased solar exposure results in increased acylated anthocyanins in the grape berry, particularly coumarylated forms . Also, high temperatures result in accumulation of highly methylated anthocyanins such as malvidin derivatives, as these compounds are less likely to degrade than their counterparts . In 2020, D1 and D5 wines demonstrated highest concentrations of acetylates, coumarylates, and methylated anthocyanins compared to C0 wines. While D1 and D5 treatments demonstrated cluster temperatures less than those from C0 treatments , the concomitant thermal degradation of total anthocyanins in C0 treatments proved to negate any modulation towards acylated or methylated forms in resultant wines.
Similarly in 2021, C0, D1 and D5 wines exhibited reduced acylation compared to D4 wines. Again, while D4 consistently exhibited less intense cluster temperatures, the thermal degradation in more exposed treatments eclipsed any identifiable acylation modulation from hot growing conditions. Acylated anthocyanins are more stable compounds and provide color stability and increase blueness in wine . However, an increase in methylated anthocyanins will lead to redder hues in wine . Therefore, the improvement in acylated and methylated anthocyanin content due to partial solar radiation exclusion may enhance color perception in young red wines through color stabilization and alteration of wine hue. Likewise, anthocyanin hydroxylation is also directly influenced by temperature and solar radiation exposure. Previous studies on berry exposure utilizing UV selective shade nets as well as leaf removal, demonstrated anthocyanin tri-hydroxylation increases with increasing berry temperature . Increases in tri-hydroxylation are driven by accumulation of malvidin derivatives and the temperature sensitivity of F3’H, the catalyzing enzyme for 3’- hydroxylated anthocyanin biosynthesis . The highest ratio of tri- to di-hydroxylated anthocyanins in 2020 C0 wines were driven by higher concentrations of 3-p-coumaroyl-glucoside derivatives of delphinidin, petunidin and malvidin, despite the ratio of tri- to di-hydroxylated anthocyanins being unaffected at harvest in the grape berry in 2020 . Among shade film treatments in 2020, the reduction of UV light exposure, was the determining factor in anthocyanin hydroxylation patterns rather than berry temperature. Previous shade net studies at the experimental site showed a reduction in UV radiation with black-40% and blue-40% shade nets led to higher anthocyanin tri-hydroxylation in the grape berry compared to control vines at harvest . With the reduction of UVB and UVC radiation in D4 and D5 vines, anthocyanin tri-hydroxylation was reduced, regardless of temperature. Ultimately, the upregulation of F3’H from sun exposure could be negated by the reduced catalytic activity of this enzyme under high temperatures experienced in 2020. In the cooler 2021 vintage, the ratio of tri- to di-hydroxylated anthocyanins was unaffected, due to non-significant effect of shade films on acetylated anthocyanins. Ultimately, increased tri-hydroxylation in young red wines will also impact wine hue, resulting in more purple wines . Flavonols in the grape berry skin act as photoprotectants and are strongly induced by ultraviolet radiation . Flavonol composition in the grape berry can be used to determine overexposure, raspberry container specifically by quantifying the molar abundance of kaempferol. C0 berries in this study were shown to be overexposed by surpassing the previously described threshold of approximately 7% molar abundance of kaempferol . In both years of the study, flavonol composition in grape berries was maximized in C0 fruit, but D4 and D5 fruit contained the most flavonols across the shade films with minimal thermal degradation of the compounds on the vine. Likewise in both winevintages, flavonol concentration was modulated by UV radiation exposure, proportional to the amount of UV radiation transmitted to the grapevine. Of the wines produced from shade films treatments, D4 allowed for the most UV transmission while subsequently reducing near infrared transmission by approximately 15%. These light conditions ultimately optimized flavonol content in D4 wines compared to the other shade treatments from both wine vintages. As such, this demonstrated the transmissibility of berry composition under shade treatments to directly improve wine flavonoid profiles. For hot viticulture regions, photo selective solar radiation exclusion provides a strategy to improve not only flavonoid profile but also wine color intensity through copigmentation with anthocyanins.
C6-alcohols such as 1-hexanol and -2-hexen-1-ol are often found in wines as fermentation products. These compounds are derived from microbial mediated cleavage of the C-C double bonds in linoleic and linolenic acids, by lipoxygenase and alcohol dehydrogenate enzymes in yeast . Compounds such as 1-hexanol and -2-hexen-1-ol are associated with aromas such as cut grass, green, fat, and herbaceous aromas and their OAV thresholds are 8000 and 400 ug/L, respectively . The effect of shade films on C6-alcohols was evident in both years; however, there was a yearly effect on which alcohol was altered by the treatment. In 2020, -2- hexen-1-ol was the lowest in D4. In 2021, -2-hexen-1-ol was unaffected by shade films, while 1-hexanol was highest in C0, D4 and D5. Although there was a statistical difference in C6 alcohols, the differences were not large enough between C0 and treatments to cross the OAV thresholds for these compounds. Increases of C6-alcohols in C0, D4, and D5 wines may be explained by solar radiation overexposure in the treated clusters. L. He etal. reported higher linoleic and linolenic acid biosynthesis with leaf removal at veraison. Subsequently, fruit exposed to increased solar radiation had elevated precursors for C6-alcohol production during yeast metabolism. Additionally, L. He et. al. showed higher initial concentration of C6-alcohols in grape berries from leaf removal treatments due to modulation of the volatile compound metabolome and transcriptome in grape berries exposed to sunlight under dry-hot conditions. Therefore, in our experiment which has similar climatic conditions to L. He et. al. , fruit from shade films with higher percentages of UV radiation may have both an increase in linoleic and linolenic acids to act as C6-alcohols aromas precursors and increased C6- alcohols in the exposed grape berries. Ultimately, overexposure of the grape berry led to more green and grassy aromas in wine, which may lead to an unripe perception of these wines. These compounds are generally pleasant aromas including mushroom, roses, honey, candy, and fruity notes. Of these compounds, shade treatments increased isoamyl alcohol concentration in 2020 and benzyl alcohol concentration in wines from both vintages. Isoamyl alcohol is associated with solvent and cheese aromas and, while benzyl alcohol is characterized as being citrusy and sweet . The odor active thresholds for these compounds are 30000 μg/L and 10000 μg/L, respectively . In 2020, C0 had the lowest concentration of isoamyl alcohol in wines. The effect of shading on the concentration of isoamyl alcohol in wines varies in literature . In hot growing regions, 75% of total solar radiation exclusion with black polyethylene canopy side shade nets resulted in wines with reduced isoamyl alcohol compared to the uncovered control vines . However, this experimental site was in a region that received approximately 704.5°C less growing degree days than the present experimental site in the hotter 2020 season, and 514.1°C growing degree days less than the cooler 2021 season. In the study by Lu et al. 2021, reduced solar radiation exposure in a cooler growing region may have resulted in reduced isoamyl alcohol in shaded fruit. When cluster temperatures exceed 42°C in exposed vines, there is a reduction in isoamyl alcohol in resultant wines compared to wines produced from fruit under red and black shade nets . With cluster temperatures of C0 fruit exceeding 42°C, excessive cluster temperatures may be prompting the reduction in isoamyl alcohol and overall wine fruitiness from those produced from overexposed clusters. However, while there was a statistical difference in isoamyl alcohol concentrations between C0 and treatment wines, the effect was not large enough to exceed the OAV threshold for this compound . Shade films affected the ester composition predominantly in 2020 wines.