The C content of sugar was calculated at 42% using the formula of sucrose

The rachis, skins and seeds were dried in oven and weighed. The pulp was separated from the juice + pulp with vacuum filtration using a pre-weighed Q2 filter paper . The largest portion of grape juice soluble solids are sugars. Sugars were measured at 25% using a Refractometer PAL-1 . Below ground biomass was measured by pneumatically excavating the root system with compressed air applied at 0.7 Mpa for three of the 12 sampling blocks, exposing two vines each in 8 m3 pits. The soil was prewetted prior to excavation to facilitate removal and minimize root damage. A root restricting duripan, common in this soil, provided an effective rooting depth of about 40 cm at this site with only 5–10 fine and small roots able to penetrate below this depth in each plot. Roots were washed, cut into smaller segments and separated into four size classes , oven-dried at 60 °C for 48 h and weighed. Larger roots were left in the oven for 4 days. Stumps were considered part of the root system for this analysis.In vineyard ecosystems, annual C is represented by fruit, leaves and canes, and is either removed from the system and/or incorporated into the soil C pools, which was not considered further. Structures whose tissues remain in the plant were considered perennial C. Woody biomass volumes were measured and used for perennial C estimates. Cordon and trunk diameters were measured using a digital caliper at four locations per piece and averaged,plastic plant pot and lengths were measured with a calibrated tape.

Sixty vines were used for the analysis; twelve vines were omitted due to missing values in one or more vine fractions. All statistical estimates were conducted in R.The present study provides results for an assessment of vineyard biomass that is comparable with data from previous studies, as well as estimates of below ground biomass that are more precise than previous reports. While most studies on C sequestration in vineyards have focused on soil C, some have quantified above ground biomass and C stocks. For example, a study of grapevines in California found net primary productivity values between 5.5 and 11 Mg C ha−1—figures that are comparable to our mean estimate of 12.4 Mg C ha−1 . For pruned biomass, our estimate of 1.1 Mg C ha−1 were comparable to two assessments that estimated 2.5 Mg of pruned biomass ha−1 for both almonds and vineyards. Researchers reported that mature orchard crops in California allocated, on average, one third of their NPP to harvestable biomass, and mature vines allocated 35–50% of that year’s production to grape clusters. Our estimate of 50% of annual biomass C allocated to harvested clusters represent the fraction of the structures grown during the season . Furthermore, if woody annual increments were considered this proportion would be even lower. Likewise the observed 1.7 Mg ha−1 in fruit represents ~14% of total biomass , which is within 10% of other studies in the region at similar vine densities. More importantly, this study reports the fraction of C that could be recovered from wine making and returned to the soil for potential long term storage. However, this study is restricted to the agronomic and environmental conditions of the site, and the methodology would require validation and potential adjustment in other locations and conditions.

Few studies have conducted a thorough evaluation of below ground vine biomass in vineyards, although Elder field did estimate that fine roots contributed 20–30% of total NPP and that C was responsible for 45% of that dry matter. More recently, Brunori et al. studied the capability of grapevines to efficiently store C throughout the growing season and found that root systems contributed to between 9 and 26% of the total vine C fixation in a model Vitis vinifera sativa L. cv Merlot/berlandieri rupestris vineyard. The results of our study provide a utilitarian analysis of C storage in mature wine grape vines, including above and below ground fractions and annual vs. perennial allocations. Such information constitutes the basic unit of measurement from which one can then estimate the contribution of wine grapes to C budgets at multiple scales— fruit, plant or vineyard level—and by region, sector, or in mixed crop analyses. Our study builds on earlier research that focused on the basic physiology, development and allocation of biomass in vines. Previous research has also examined vineyard-level carbon at the landscape level with coarser estimates of the absolute C storage capacity of vines of different ages, as well as the relative contribution of vines and woody biomass in natural vegetation in mixed vine yard-wild land landscapes. The combination of findings from those studies, together with the more precise and complete carbon-by-vine structure assessment provided here, mean that managers now have access to methods and analytical tools that allow precise and detailed C estimates from the individual vine to whole-farm scales. As carbon accounting in vineyard landscapes becomes more sophisticated, widespread and economically relevant, such vineyard-level analyses will become increasingly important for informing management decisions. The greater vine-level measuring precision that this study affords should also translate into improved scaled-up C assessments . In California alone, for example, there are more than 230,000 ha are planted in vines. Given that for many, if not most of those hectares, the exact number of individual vines is known, it is easy to see how improvements in vine-level measuring accuracy can have benefits from the individual farmer to the entire sector.

Previous efforts to develop rough allometric woody biomass equations for vines notwithstanding, there is still a need to improve our precision in estimating of how biomass changes with different parameters. Because the present analysis was conducted for 15 year old Cabernet vines, there is now a need for calibrating how vine C varies with age, varietal and training system. There is also uncertainty around the influence of grafting onto rootstock on C accumulation in vines. As mentioned in the methods, the vines in this study were not grafted—an artifact of the root-limiting duripan approximately 50 cm below the soil surface. The site’s location on the flat, valley bottom of a river floodplain also means that its topography, while typical of other vineyard sites perse, created conditions that limit soil depth, drainage and decomposition. As such, the physical conditions examined here may differ significantly from more hilly regions in California, such as Sonoma and Mendocino counties. Similarly, the lack of a surrounding natural vegetation buffer at this site compared to other vineyards may mean that the ecological conditions of the soil communities may or may not have been broadly typical of those found in other vineyard sites. Thus, to the extent that future studies can document the degree to which such parameters influence C accumulation in vines or across sites, they will improve the accuracy and utility of C estimation methods and enable viticulturists to be among the first sectors in agriculture for which accurate C accounting is an industry wide possibility. The current study was also designed to complement a growing body of research focusing on soil-vine interactions. Woody carbon reserves and sugar accumulation play a supportive role in grape quality, the main determinant of crop value in wine grapes. The extent to which biomass production, especially in below ground reservoirs, relates to soil carbon is of immediate interest for those focused on nutrient cycling, plant health and fruit production,plastic planter pot as well as for those concerned with C storage. The soil-vine interface may also be the area where management techniques can have the highest impact on C stocks and harvest potential. We expect the below ground estimates of root biomass and C provided here will be helpful in this regard and for developing a more thorough understanding of below ground C stores at the landscape level. For example, Williams et al. estimated this component to be the largest reservoir of C in the vineyard landscape they examined, but they did not include root biomass in their calculations. Others have assumed root systems to be ~30% of vine biomass based on the reported biomass values for roots, trunk, and cordons. With the contribution of this study, the magnitude of the below ground reservoir can now be updated.High bush blueberries , native to the northeastern United States, are important commercial fruit and are the most planted blueberry species in the world . In the United States, blueberries traditionally have been grown in cooler northern regions; however, the development of new southern cultivars with low chilling-hour requirements has made possible the expansion of blueberry production to the southern United States and California .Blueberry production in California was estimated in 2007 at around 4,500 acres and is rapidly increasing.

Common southern cultivars grown include ‘Misty’ and ‘O’Neal’, but other improved southern high bush cultivars are now being grown from Fresno southward, such as ‘Emerald’, ‘Jewel’ and ‘Star’ . Southern high bush “low-chill” cultivars are notable for their productivity, fruit quality and adaptation , and require only 150 to 600 chillhours, making them promising cultivars for the San Joaquin Valley’s mild winters . Since 1998, we have conducted long-term productivity and performance evaluations of these cultivars at the University of California’s Kearney Agricultural Center in Parlier . North American production of high bush blueberry has been increasing since 1975, due to expansion of harvested area and yields through improvements in cultivars and production systems. In 2005, North America represented 69% of the world’s acreage of high bush blueberries, with 74,589 acres producing 306.4 million pounds . Acreage and production increased 11% and 32%, respectively, from 2003 to 2005. The U.S. West, South and Midwest experienced the highest increases in acreage. In 2005, 63% of the world’s production of high bush blueberries went to the fresh market. North America accounts for a large part of global high bush blueberry production, representing 67% of the fresh and 94% of the processed markets . Blueberry consumption is increasing, which is encouraging increased production. As a result, fresh blueberries are becoming a profitable specialty crop, especially in early production areas such as the San Joaquin Valley . In general, a consumer’s first purchase is dictated by fruit appearance and firmness . However, subsequent purchases are dependent on the consumer’s satisfaction with flavor and quality, which are related to fruit soluble solids , titratable acidity , the ratio of soluble solids to titratable acidity, flesh firmness and antioxidant activity . Vaccinium species differ in chemical composition, such as sugars and organic acids. The sugars of the larger high bush blueberry cultivars that are grown in California are fructose, glucose and traces of sucrose. Lowbush blueberries — which are wild, smaller and grow mostly in Maine — lack sucrose. The composition of organic acids is a distinguishing characteristic among species. In high bush cultivars, the predominant organic acid is usually citric , while the percentages of succinic, malic and quinic acids are 11%, 2% and 5%, respectively. However, in “rabbiteye” blueberries the predominant organic acids are succinic and malic, with percentages of 50% and 34%, respectively, while citric acid accounts for only about 10% . These different proportions of organic acids affect sensory quality; the combination of citric and malic acids gives a sour taste, while succinic acid gives a bitter taste . In addition to flavor, consumers also value the nutritional quality of fresh fruits and their content of energy, vitamins, minerals, dietary fiber and many bioactive compounds that are beneficial for human health . Fruits, nuts and vegetables are of great importance for human nutrition, supplying vitamins, minerals and dietary fiber. For example, they provide 91% of vitamin C, 48% of vitamin A, 27% of vitamin B6, 17% of thiamine and 15% of niacin consumed in the United States . Thedaily consumption of fruits, nuts and vegetables has also been related to reductions in heart disease, some forms of cancer, stroke and other chronic diseases. Blueberries, like other berries, provide an abundant supply of bioactive compounds with antioxidant activity, such as flavanoids and phenolic acids . For example, a study performed in rats showed that when they were fed diets supplemented with 2% blueberry extracts, age-related losses of behavior and signal transduction were delayed or even reversed, and radiation-induced losses of spatial learning and memory were reduced .